Temperature dependence of the plastic flow stress of covalent crystals

A model is presented to explain the steep temperature dependence of the plastic flow stress τ c (T), of highly covalent crystals of α-Al 2 O 3 , Si and GaAs. The model assumes high and steep Peierls potentials: V p (x) = Px 2 + Qx n (n > 2) for x < a/2, a being the period. The kink pair format...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties Physics of condensed matter. Defects and mechanical properties, 1995-02, Vol.71 (2), p.389-397
Hauptverfasser: Suzuki, Takayoshi, Koizumi, Hirokazu, Kirchner, Helmut O. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 2
container_start_page 389
container_title Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties
container_volume 71
creator Suzuki, Takayoshi
Koizumi, Hirokazu
Kirchner, Helmut O. K.
description A model is presented to explain the steep temperature dependence of the plastic flow stress τ c (T), of highly covalent crystals of α-Al 2 O 3 , Si and GaAs. The model assumes high and steep Peierls potentials: V p (x) = Px 2 + Qx n (n > 2) for x < a/2, a being the period. The kink pair formation energy ΔH(τ) is calculated from the elastic interaction energy of a trapezoidal kink pair. The calculation predicts narrow and abrupt kink pairs. The activation energy ΔH(τ) obtained describes the experimental relation log τ c = A - BT with constants A and B. The results suggest that the kink pair formation is the rate controlling process of dislocation motion in covalent crystals.
doi_str_mv 10.1080/01418619508244363
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1298100369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298100369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1cba734ba0fa2fa4cc2d84bee160d27bf385c4d052cf6a069289e4d8b1568b163</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNuCXldf_myaBS9SrAoFL_W8ZLMvuGW7WZOspd_elFYv4uXN4f1mBoaQawp3FBTcAxVUSVoWoJgQXPITMqFCQi7Lkp2Syf6fJwDOyUUIawCgM4AJWaxwM6DXcfSYNThg32BvMHM2ix-YDZ0OsTWZ7dw2C9FjCPuXcV-6wz5mxu9C1F24JGc2CV4ddUreF0-r-Uu-fHt-nT8uc8OLIubU1HrGRa3Bama1MIY1StSIVELDZrXlqjCigYIZKzXIkqkSRaNqWsh0JJ-Sm0Pu4N3niCFWazf6PlVWlJWKAnBZJooeKONdCB5tNfh2o_2uolDt56r-zJU8t8dkHYzurNe9acOvkReJpixhDwes7a3zG711vmuqqHed8z8e_n_LN9UdfF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298100369</pqid></control><display><type>article</type><title>Temperature dependence of the plastic flow stress of covalent crystals</title><source>Taylor &amp; Francis Journals Complete</source><source>Periodicals Index Online</source><creator>Suzuki, Takayoshi ; Koizumi, Hirokazu ; Kirchner, Helmut O. K.</creator><creatorcontrib>Suzuki, Takayoshi ; Koizumi, Hirokazu ; Kirchner, Helmut O. K.</creatorcontrib><description>A model is presented to explain the steep temperature dependence of the plastic flow stress τ c (T), of highly covalent crystals of α-Al 2 O 3 , Si and GaAs. The model assumes high and steep Peierls potentials: V p (x) = Px 2 + Qx n (n &gt; 2) for x &lt; a/2, a being the period. The kink pair formation energy ΔH(τ) is calculated from the elastic interaction energy of a trapezoidal kink pair. The calculation predicts narrow and abrupt kink pairs. The activation energy ΔH(τ) obtained describes the experimental relation log τ c = A - BT with constants A and B. The results suggest that the kink pair formation is the rate controlling process of dislocation motion in covalent crystals.</description><identifier>ISSN: 0141-8610</identifier><identifier>EISSN: 1460-6992</identifier><identifier>DOI: 10.1080/01418619508244363</identifier><identifier>CODEN: PMAADG</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Exact sciences and technology ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics</subject><ispartof>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties, 1995-02, Vol.71 (2), p.389-397</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1cba734ba0fa2fa4cc2d84bee160d27bf385c4d052cf6a069289e4d8b1568b163</citedby><cites>FETCH-LOGICAL-c355t-1cba734ba0fa2fa4cc2d84bee160d27bf385c4d052cf6a069289e4d8b1568b163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01418619508244363$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01418619508244363$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27846,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3561912$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Takayoshi</creatorcontrib><creatorcontrib>Koizumi, Hirokazu</creatorcontrib><creatorcontrib>Kirchner, Helmut O. K.</creatorcontrib><title>Temperature dependence of the plastic flow stress of covalent crystals</title><title>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties</title><description>A model is presented to explain the steep temperature dependence of the plastic flow stress τ c (T), of highly covalent crystals of α-Al 2 O 3 , Si and GaAs. The model assumes high and steep Peierls potentials: V p (x) = Px 2 + Qx n (n &gt; 2) for x &lt; a/2, a being the period. The kink pair formation energy ΔH(τ) is calculated from the elastic interaction energy of a trapezoidal kink pair. The calculation predicts narrow and abrupt kink pairs. The activation energy ΔH(τ) obtained describes the experimental relation log τ c = A - BT with constants A and B. The results suggest that the kink pair formation is the rate controlling process of dislocation motion in covalent crystals.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Exact sciences and technology</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><issn>0141-8610</issn><issn>1460-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwNuCXldf_myaBS9SrAoFL_W8ZLMvuGW7WZOspd_elFYv4uXN4f1mBoaQawp3FBTcAxVUSVoWoJgQXPITMqFCQi7Lkp2Syf6fJwDOyUUIawCgM4AJWaxwM6DXcfSYNThg32BvMHM2ix-YDZ0OsTWZ7dw2C9FjCPuXcV-6wz5mxu9C1F24JGc2CV4ddUreF0-r-Uu-fHt-nT8uc8OLIubU1HrGRa3Bama1MIY1StSIVELDZrXlqjCigYIZKzXIkqkSRaNqWsh0JJ-Sm0Pu4N3niCFWazf6PlVWlJWKAnBZJooeKONdCB5tNfh2o_2uolDt56r-zJU8t8dkHYzurNe9acOvkReJpixhDwes7a3zG711vmuqqHed8z8e_n_LN9UdfF4</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Suzuki, Takayoshi</creator><creator>Koizumi, Hirokazu</creator><creator>Kirchner, Helmut O. K.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HAGHG</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19950201</creationdate><title>Temperature dependence of the plastic flow stress of covalent crystals</title><author>Suzuki, Takayoshi ; Koizumi, Hirokazu ; Kirchner, Helmut O. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1cba734ba0fa2fa4cc2d84bee160d27bf385c4d052cf6a069289e4d8b1568b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Exact sciences and technology</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Takayoshi</creatorcontrib><creatorcontrib>Koizumi, Hirokazu</creatorcontrib><creatorcontrib>Kirchner, Helmut O. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Takayoshi</au><au>Koizumi, Hirokazu</au><au>Kirchner, Helmut O. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature dependence of the plastic flow stress of covalent crystals</atitle><jtitle>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>71</volume><issue>2</issue><spage>389</spage><epage>397</epage><pages>389-397</pages><issn>0141-8610</issn><eissn>1460-6992</eissn><coden>PMAADG</coden><abstract>A model is presented to explain the steep temperature dependence of the plastic flow stress τ c (T), of highly covalent crystals of α-Al 2 O 3 , Si and GaAs. The model assumes high and steep Peierls potentials: V p (x) = Px 2 + Qx n (n &gt; 2) for x &lt; a/2, a being the period. The kink pair formation energy ΔH(τ) is calculated from the elastic interaction energy of a trapezoidal kink pair. The calculation predicts narrow and abrupt kink pairs. The activation energy ΔH(τ) obtained describes the experimental relation log τ c = A - BT with constants A and B. The results suggest that the kink pair formation is the rate controlling process of dislocation motion in covalent crystals.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01418619508244363</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8610
ispartof Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties, 1995-02, Vol.71 (2), p.389-397
issn 0141-8610
1460-6992
language eng
recordid cdi_proquest_journals_1298100369
source Taylor & Francis Journals Complete; Periodicals Index Online
subjects Condensed matter: structure, mechanical and thermal properties
Deformation and plasticity (including yield, ductility, and superplasticity)
Exact sciences and technology
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
title Temperature dependence of the plastic flow stress of covalent crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20dependence%20of%20the%20plastic%20flow%20stress%20of%20covalent%20crystals&rft.jtitle=Philosophical%20magazine.%20A,%20Physics%20of%20condensed%20matter.%20Defects%20and%20mechanical%20properties&rft.au=Suzuki,%20Takayoshi&rft.date=1995-02-01&rft.volume=71&rft.issue=2&rft.spage=389&rft.epage=397&rft.pages=389-397&rft.issn=0141-8610&rft.eissn=1460-6992&rft.coden=PMAADG&rft_id=info:doi/10.1080/01418619508244363&rft_dat=%3Cproquest_pasca%3E1298100369%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298100369&rft_id=info:pmid/&rfr_iscdi=true