Corrections for Bias in Regression Estimates After Logarithmic Transformation

Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 1973-11, Vol.54 (6), p.1403-1407
Hauptverfasser: Beauchamp, John J., Olson, Jerry S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1407
container_issue 6
container_start_page 1403
container_title Ecology (Durham)
container_volume 54
creator Beauchamp, John J.
Olson, Jerry S.
description Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.
doi_str_mv 10.2307/1934208
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1296424658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1934208</jstor_id><sourcerecordid>1934208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2563-499b0cc45f6e269d56c6183f5f19714958acdd5206af04a590c90e1ec65092ee3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKv4FQIKnlYnz26OdakPqAhSD56WmCY1pd3UJKX02xvZXjuXGWZ-_3khdE3gnjIYPRDFOIX6BA1KpCpFRnCKBgCEVkqK-hxdpLSEYoTXA_TWhBityT50CbsQ8aPXCfsOf9hFtCmVPJ6k7Nc624THLtuIp2Gho88_a2_wLOouFV2pF_QSnTm9Svbq4Ifo82kya16q6fvzazOeVoYKySqu1DcYw4WTlko1F9JIUjMnHFEjwpWotZnPBQWpHXAtFBgFllgjBShqLRuim77vJobfrU25XYZt7MrIllAlOeXl0kLd9ZSJIaVoXbuJ5ZC4bwm0_79qD78qJOvJnV_Z_TGsnTRfZUEmuCQcWFHd9qplyiEebf4H9xJ0YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296424658</pqid></control><display><type>article</type><title>Corrections for Bias in Regression Estimates After Logarithmic Transformation</title><source>Periodicals Index Online</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Beauchamp, John J. ; Olson, Jerry S.</creator><creatorcontrib>Beauchamp, John J. ; Olson, Jerry S.</creatorcontrib><description>Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.2307/1934208</identifier><language>eng</language><publisher>Brooklyn, N.Y., etc: Duke University Press</publisher><subject>Approximation ; Deciduous forests ; Estimation bias ; Estimators ; Estimators for the mean ; Linear regression ; Mathematical minima ; Statistical variance ; Trees ; Unbiased estimators</subject><ispartof>Ecology (Durham), 1973-11, Vol.54 (6), p.1403-1407</ispartof><rights>Copyright 1973 The Ecological Society of America</rights><rights>1973 by the Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2563-499b0cc45f6e269d56c6183f5f19714958acdd5206af04a590c90e1ec65092ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1934208$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1934208$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27867,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Beauchamp, John J.</creatorcontrib><creatorcontrib>Olson, Jerry S.</creatorcontrib><title>Corrections for Bias in Regression Estimates After Logarithmic Transformation</title><title>Ecology (Durham)</title><description>Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.</description><subject>Approximation</subject><subject>Deciduous forests</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Linear regression</subject><subject>Mathematical minima</subject><subject>Statistical variance</subject><subject>Trees</subject><subject>Unbiased estimators</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kEtLAzEQx4MoWKv4FQIKnlYnz26OdakPqAhSD56WmCY1pd3UJKX02xvZXjuXGWZ-_3khdE3gnjIYPRDFOIX6BA1KpCpFRnCKBgCEVkqK-hxdpLSEYoTXA_TWhBityT50CbsQ8aPXCfsOf9hFtCmVPJ6k7Nc624THLtuIp2Gho88_a2_wLOouFV2pF_QSnTm9Svbq4Ifo82kya16q6fvzazOeVoYKySqu1DcYw4WTlko1F9JIUjMnHFEjwpWotZnPBQWpHXAtFBgFllgjBShqLRuim77vJobfrU25XYZt7MrIllAlOeXl0kLd9ZSJIaVoXbuJ5ZC4bwm0_79qD78qJOvJnV_Z_TGsnTRfZUEmuCQcWFHd9qplyiEebf4H9xJ0YQ</recordid><startdate>197311</startdate><enddate>197311</enddate><creator>Beauchamp, John J.</creator><creator>Olson, Jerry S.</creator><general>Duke University Press</general><general>Ecological Society of America</general><general>Brooklyn Botanic Garden, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>197311</creationdate><title>Corrections for Bias in Regression Estimates After Logarithmic Transformation</title><author>Beauchamp, John J. ; Olson, Jerry S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2563-499b0cc45f6e269d56c6183f5f19714958acdd5206af04a590c90e1ec65092ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Approximation</topic><topic>Deciduous forests</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Linear regression</topic><topic>Mathematical minima</topic><topic>Statistical variance</topic><topic>Trees</topic><topic>Unbiased estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beauchamp, John J.</creatorcontrib><creatorcontrib>Olson, Jerry S.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beauchamp, John J.</au><au>Olson, Jerry S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrections for Bias in Regression Estimates After Logarithmic Transformation</atitle><jtitle>Ecology (Durham)</jtitle><date>1973-11</date><risdate>1973</risdate><volume>54</volume><issue>6</issue><spage>1403</spage><epage>1407</epage><pages>1403-1407</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.</abstract><cop>Brooklyn, N.Y., etc</cop><pub>Duke University Press</pub><doi>10.2307/1934208</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 1973-11, Vol.54 (6), p.1403-1407
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_journals_1296424658
source Periodicals Index Online; JSTOR Archive Collection A-Z Listing
subjects Approximation
Deciduous forests
Estimation bias
Estimators
Estimators for the mean
Linear regression
Mathematical minima
Statistical variance
Trees
Unbiased estimators
title Corrections for Bias in Regression Estimates After Logarithmic Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrections%20for%20Bias%20in%20Regression%20Estimates%20After%20Logarithmic%20Transformation&rft.jtitle=Ecology%20(Durham)&rft.au=Beauchamp,%20John%20J.&rft.date=1973-11&rft.volume=54&rft.issue=6&rft.spage=1403&rft.epage=1407&rft.pages=1403-1407&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.2307/1934208&rft_dat=%3Cjstor_proqu%3E1934208%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1296424658&rft_id=info:pmid/&rft_jstor_id=1934208&rfr_iscdi=true