Corrections for Bias in Regression Estimates After Logarithmic Transformation
Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 1973-11, Vol.54 (6), p.1403-1407 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1407 |
---|---|
container_issue | 6 |
container_start_page | 1403 |
container_title | Ecology (Durham) |
container_volume | 54 |
creator | Beauchamp, John J. Olson, Jerry S. |
description | Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line. |
doi_str_mv | 10.2307/1934208 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1296424658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1934208</jstor_id><sourcerecordid>1934208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2563-499b0cc45f6e269d56c6183f5f19714958acdd5206af04a590c90e1ec65092ee3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKv4FQIKnlYnz26OdakPqAhSD56WmCY1pd3UJKX02xvZXjuXGWZ-_3khdE3gnjIYPRDFOIX6BA1KpCpFRnCKBgCEVkqK-hxdpLSEYoTXA_TWhBityT50CbsQ8aPXCfsOf9hFtCmVPJ6k7Nc624THLtuIp2Gho88_a2_wLOouFV2pF_QSnTm9Svbq4Ifo82kya16q6fvzazOeVoYKySqu1DcYw4WTlko1F9JIUjMnHFEjwpWotZnPBQWpHXAtFBgFllgjBShqLRuim77vJobfrU25XYZt7MrIllAlOeXl0kLd9ZSJIaVoXbuJ5ZC4bwm0_79qD78qJOvJnV_Z_TGsnTRfZUEmuCQcWFHd9qplyiEebf4H9xJ0YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296424658</pqid></control><display><type>article</type><title>Corrections for Bias in Regression Estimates After Logarithmic Transformation</title><source>Periodicals Index Online</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Beauchamp, John J. ; Olson, Jerry S.</creator><creatorcontrib>Beauchamp, John J. ; Olson, Jerry S.</creatorcontrib><description>Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.2307/1934208</identifier><language>eng</language><publisher>Brooklyn, N.Y., etc: Duke University Press</publisher><subject>Approximation ; Deciduous forests ; Estimation bias ; Estimators ; Estimators for the mean ; Linear regression ; Mathematical minima ; Statistical variance ; Trees ; Unbiased estimators</subject><ispartof>Ecology (Durham), 1973-11, Vol.54 (6), p.1403-1407</ispartof><rights>Copyright 1973 The Ecological Society of America</rights><rights>1973 by the Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2563-499b0cc45f6e269d56c6183f5f19714958acdd5206af04a590c90e1ec65092ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1934208$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1934208$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27867,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Beauchamp, John J.</creatorcontrib><creatorcontrib>Olson, Jerry S.</creatorcontrib><title>Corrections for Bias in Regression Estimates After Logarithmic Transformation</title><title>Ecology (Durham)</title><description>Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.</description><subject>Approximation</subject><subject>Deciduous forests</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Linear regression</subject><subject>Mathematical minima</subject><subject>Statistical variance</subject><subject>Trees</subject><subject>Unbiased estimators</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kEtLAzEQx4MoWKv4FQIKnlYnz26OdakPqAhSD56WmCY1pd3UJKX02xvZXjuXGWZ-_3khdE3gnjIYPRDFOIX6BA1KpCpFRnCKBgCEVkqK-hxdpLSEYoTXA_TWhBityT50CbsQ8aPXCfsOf9hFtCmVPJ6k7Nc624THLtuIp2Gho88_a2_wLOouFV2pF_QSnTm9Svbq4Ifo82kya16q6fvzazOeVoYKySqu1DcYw4WTlko1F9JIUjMnHFEjwpWotZnPBQWpHXAtFBgFllgjBShqLRuim77vJobfrU25XYZt7MrIllAlOeXl0kLd9ZSJIaVoXbuJ5ZC4bwm0_79qD78qJOvJnV_Z_TGsnTRfZUEmuCQcWFHd9qplyiEebf4H9xJ0YQ</recordid><startdate>197311</startdate><enddate>197311</enddate><creator>Beauchamp, John J.</creator><creator>Olson, Jerry S.</creator><general>Duke University Press</general><general>Ecological Society of America</general><general>Brooklyn Botanic Garden, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>197311</creationdate><title>Corrections for Bias in Regression Estimates After Logarithmic Transformation</title><author>Beauchamp, John J. ; Olson, Jerry S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2563-499b0cc45f6e269d56c6183f5f19714958acdd5206af04a590c90e1ec65092ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Approximation</topic><topic>Deciduous forests</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Linear regression</topic><topic>Mathematical minima</topic><topic>Statistical variance</topic><topic>Trees</topic><topic>Unbiased estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beauchamp, John J.</creatorcontrib><creatorcontrib>Olson, Jerry S.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beauchamp, John J.</au><au>Olson, Jerry S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrections for Bias in Regression Estimates After Logarithmic Transformation</atitle><jtitle>Ecology (Durham)</jtitle><date>1973-11</date><risdate>1973</risdate><volume>54</volume><issue>6</issue><spage>1403</spage><epage>1407</epage><pages>1403-1407</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Experience with biological data, such as dimensions of organisms, often confirms that logarithmic transformations should precede the testing of hypotheses about regression relations. However, estimates also may be needed in terms of untransformed variables. Just taking antilogarithms of values from a log-log regression line or function leads to biased estimates. This note compares corrections for this bias, and includes an example relating mass of tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approximate unbiased estimators of expected values from log-antilog regression, and of variance around the unbiased regression line.</abstract><cop>Brooklyn, N.Y., etc</cop><pub>Duke University Press</pub><doi>10.2307/1934208</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 1973-11, Vol.54 (6), p.1403-1407 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_journals_1296424658 |
source | Periodicals Index Online; JSTOR Archive Collection A-Z Listing |
subjects | Approximation Deciduous forests Estimation bias Estimators Estimators for the mean Linear regression Mathematical minima Statistical variance Trees Unbiased estimators |
title | Corrections for Bias in Regression Estimates After Logarithmic Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrections%20for%20Bias%20in%20Regression%20Estimates%20After%20Logarithmic%20Transformation&rft.jtitle=Ecology%20(Durham)&rft.au=Beauchamp,%20John%20J.&rft.date=1973-11&rft.volume=54&rft.issue=6&rft.spage=1403&rft.epage=1407&rft.pages=1403-1407&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.2307/1934208&rft_dat=%3Cjstor_proqu%3E1934208%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1296424658&rft_id=info:pmid/&rft_jstor_id=1934208&rfr_iscdi=true |