Checking for Proportional n's in Factorial Anova's

If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational and psychological measurement 1974-07, Vol.34 (2), p.281-287
Hauptverfasser: Huck, Schuyler W., Layne, Benjamin H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 2
container_start_page 281
container_title Educational and psychological measurement
container_volume 34
creator Huck, Schuyler W.
Layne, Benjamin H.
description If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.
doi_str_mv 10.1177/001316447403400208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1290208477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_001316447403400208</sage_id><sourcerecordid>1290208477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-fb64649fb36e0f80768f6849c16f5dfe686a67e207a1ff1826204798aeb36eaa3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMoWFdfwFPBw57qziRpkh6X4qqwoAc9h2xN1q5rUpOu4NvbUg-COJeB4ft-ZoaQS4RrRCkXAMhQcC45MA5AQR2RDMuSFkwpdUyyEShG4pScpbSDoThiRmj9apu31m9zF2L-GEMXYt8Gb_a5n6e89fnKNH2I7TBY-vBp5umcnDizT_bip8_I8-rmqb4r1g-39_VyXTQMy75wG8EFr9yGCQtOgRTKCcWrBoUrX5wVShghLQVp0DlUVFDgslLGjoYxbEauptwuho-DTb3ehUMcNksaaTXeyKUcKDpRTQwpRet0F9t3E780gh5_o__-ZpAWk5TM1v6K_d_4Bs9VYVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290208477</pqid></control><display><type>article</type><title>Checking for Proportional n's in Factorial Anova's</title><source>Access via SAGE</source><source>Periodicals Index Online</source><creator>Huck, Schuyler W. ; Layne, Benjamin H.</creator><creatorcontrib>Huck, Schuyler W. ; Layne, Benjamin H.</creatorcontrib><description>If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.</description><identifier>ISSN: 0013-1644</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/001316447403400208</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><ispartof>Educational and psychological measurement, 1974-07, Vol.34 (2), p.281-287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-fb64649fb36e0f80768f6849c16f5dfe686a67e207a1ff1826204798aeb36eaa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/001316447403400208$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/001316447403400208$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27869,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Huck, Schuyler W.</creatorcontrib><creatorcontrib>Layne, Benjamin H.</creatorcontrib><title>Checking for Proportional n's in Factorial Anova's</title><title>Educational and psychological measurement</title><description>If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.</description><issn>0013-1644</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kMFKxDAQhoMoWFdfwFPBw57qziRpkh6X4qqwoAc9h2xN1q5rUpOu4NvbUg-COJeB4ft-ZoaQS4RrRCkXAMhQcC45MA5AQR2RDMuSFkwpdUyyEShG4pScpbSDoThiRmj9apu31m9zF2L-GEMXYt8Gb_a5n6e89fnKNH2I7TBY-vBp5umcnDizT_bip8_I8-rmqb4r1g-39_VyXTQMy75wG8EFr9yGCQtOgRTKCcWrBoUrX5wVShghLQVp0DlUVFDgslLGjoYxbEauptwuho-DTb3ehUMcNksaaTXeyKUcKDpRTQwpRet0F9t3E780gh5_o__-ZpAWk5TM1v6K_d_4Bs9VYVI</recordid><startdate>197407</startdate><enddate>197407</enddate><creator>Huck, Schuyler W.</creator><creator>Layne, Benjamin H.</creator><general>SAGE Publications</general><general>Educational and Psychological Measurement, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>197407</creationdate><title>Checking for Proportional n's in Factorial Anova's</title><author>Huck, Schuyler W. ; Layne, Benjamin H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-fb64649fb36e0f80768f6849c16f5dfe686a67e207a1ff1826204798aeb36eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huck, Schuyler W.</creatorcontrib><creatorcontrib>Layne, Benjamin H.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huck, Schuyler W.</au><au>Layne, Benjamin H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checking for Proportional n's in Factorial Anova's</atitle><jtitle>Educational and psychological measurement</jtitle><date>1974-07</date><risdate>1974</risdate><volume>34</volume><issue>2</issue><spage>281</spage><epage>287</epage><pages>281-287</pages><issn>0013-1644</issn><eissn>1552-3888</eissn><abstract>If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/001316447403400208</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-1644
ispartof Educational and psychological measurement, 1974-07, Vol.34 (2), p.281-287
issn 0013-1644
1552-3888
language eng
recordid cdi_proquest_journals_1290208477
source Access via SAGE; Periodicals Index Online
title Checking for Proportional n's in Factorial Anova's
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checking%20for%20Proportional%20n's%20in%20Factorial%20Anova's&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Huck,%20Schuyler%20W.&rft.date=1974-07&rft.volume=34&rft.issue=2&rft.spage=281&rft.epage=287&rft.pages=281-287&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/001316447403400208&rft_dat=%3Cproquest_cross%3E1290208477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290208477&rft_id=info:pmid/&rft_sage_id=10.1177_001316447403400208&rfr_iscdi=true