Checking for Proportional n's in Factorial Anova's
If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give th...
Gespeichert in:
Veröffentlicht in: | Educational and psychological measurement 1974-07, Vol.34 (2), p.281-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 2 |
container_start_page | 281 |
container_title | Educational and psychological measurement |
container_volume | 34 |
creator | Huck, Schuyler W. Layne, Benjamin H. |
description | If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs. |
doi_str_mv | 10.1177/001316447403400208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1290208477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_001316447403400208</sage_id><sourcerecordid>1290208477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-fb64649fb36e0f80768f6849c16f5dfe686a67e207a1ff1826204798aeb36eaa3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMoWFdfwFPBw57qziRpkh6X4qqwoAc9h2xN1q5rUpOu4NvbUg-COJeB4ft-ZoaQS4RrRCkXAMhQcC45MA5AQR2RDMuSFkwpdUyyEShG4pScpbSDoThiRmj9apu31m9zF2L-GEMXYt8Gb_a5n6e89fnKNH2I7TBY-vBp5umcnDizT_bip8_I8-rmqb4r1g-39_VyXTQMy75wG8EFr9yGCQtOgRTKCcWrBoUrX5wVShghLQVp0DlUVFDgslLGjoYxbEauptwuho-DTb3ehUMcNksaaTXeyKUcKDpRTQwpRet0F9t3E780gh5_o__-ZpAWk5TM1v6K_d_4Bs9VYVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290208477</pqid></control><display><type>article</type><title>Checking for Proportional n's in Factorial Anova's</title><source>Access via SAGE</source><source>Periodicals Index Online</source><creator>Huck, Schuyler W. ; Layne, Benjamin H.</creator><creatorcontrib>Huck, Schuyler W. ; Layne, Benjamin H.</creatorcontrib><description>If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.</description><identifier>ISSN: 0013-1644</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/001316447403400208</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><ispartof>Educational and psychological measurement, 1974-07, Vol.34 (2), p.281-287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-fb64649fb36e0f80768f6849c16f5dfe686a67e207a1ff1826204798aeb36eaa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/001316447403400208$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/001316447403400208$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27869,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Huck, Schuyler W.</creatorcontrib><creatorcontrib>Layne, Benjamin H.</creatorcontrib><title>Checking for Proportional n's in Factorial Anova's</title><title>Educational and psychological measurement</title><description>If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.</description><issn>0013-1644</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kMFKxDAQhoMoWFdfwFPBw57qziRpkh6X4qqwoAc9h2xN1q5rUpOu4NvbUg-COJeB4ft-ZoaQS4RrRCkXAMhQcC45MA5AQR2RDMuSFkwpdUyyEShG4pScpbSDoThiRmj9apu31m9zF2L-GEMXYt8Gb_a5n6e89fnKNH2I7TBY-vBp5umcnDizT_bip8_I8-rmqb4r1g-39_VyXTQMy75wG8EFr9yGCQtOgRTKCcWrBoUrX5wVShghLQVp0DlUVFDgslLGjoYxbEauptwuho-DTb3ehUMcNksaaTXeyKUcKDpRTQwpRet0F9t3E780gh5_o__-ZpAWk5TM1v6K_d_4Bs9VYVI</recordid><startdate>197407</startdate><enddate>197407</enddate><creator>Huck, Schuyler W.</creator><creator>Layne, Benjamin H.</creator><general>SAGE Publications</general><general>Educational and Psychological Measurement, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>197407</creationdate><title>Checking for Proportional n's in Factorial Anova's</title><author>Huck, Schuyler W. ; Layne, Benjamin H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-fb64649fb36e0f80768f6849c16f5dfe686a67e207a1ff1826204798aeb36eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huck, Schuyler W.</creatorcontrib><creatorcontrib>Layne, Benjamin H.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huck, Schuyler W.</au><au>Layne, Benjamin H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checking for Proportional n's in Factorial Anova's</atitle><jtitle>Educational and psychological measurement</jtitle><date>1974-07</date><risdate>1974</risdate><volume>34</volume><issue>2</issue><spage>281</spage><epage>287</epage><pages>281-287</pages><issn>0013-1644</issn><eissn>1552-3888</eissn><abstract>If the cell frequencies (i.e., the n's) in a factorial ANOVA are not equal to one another, the researcher must determine whether or not the condition of proportionality is satisfied. Although the authors of several texts demonstrate how to test for proportionality, their discussions (a) give the impression that every cell must be tested and (b) are restricted to the case of a simple two-factor ANOVA. The present authors point out that only some of the cells need to be tested, and two rules are provided which will allow the researcher to determine how many and which cells should be tested. More importantly, the authors demonstrate how to test for proportionality in a three-way ANOVA, with comments offered concerning how the test can be generalized to higher-order factorial designs.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/001316447403400208</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-1644 |
ispartof | Educational and psychological measurement, 1974-07, Vol.34 (2), p.281-287 |
issn | 0013-1644 1552-3888 |
language | eng |
recordid | cdi_proquest_journals_1290208477 |
source | Access via SAGE; Periodicals Index Online |
title | Checking for Proportional n's in Factorial Anova's |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checking%20for%20Proportional%20n's%20in%20Factorial%20Anova's&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Huck,%20Schuyler%20W.&rft.date=1974-07&rft.volume=34&rft.issue=2&rft.spage=281&rft.epage=287&rft.pages=281-287&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/001316447403400208&rft_dat=%3Cproquest_cross%3E1290208477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290208477&rft_id=info:pmid/&rft_sage_id=10.1177_001316447403400208&rfr_iscdi=true |