Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition

Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2013-02, Vol.28 (3), p.326-332
Hauptverfasser: Xia, Ting, Otto, Joseph W., Dutta, Tanmoy, Murowchick, James, Caruso, Anthony N., Peng, Zhonghua, Chen, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 3
container_start_page 326
container_title Journal of materials research
container_volume 28
creator Xia, Ting
Otto, Joseph W.
Dutta, Tanmoy
Murowchick, James
Caruso, Anthony N.
Peng, Zhonghua
Chen, Xiaobo
description Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temperatures. The structural, optical, and photocatalytic properties of the TiO2 nanomaterials were studied with x-ray diffraction, Raman spectroscopy, transmission electron microscopy, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, x-ray and ultraviolet (UV) photoemission spectroscopy, UV–vis diffusive reflectance, and photocatalytic decomposition of methylene blue. We found that the titanium ethylene glycolide decomposes at 330 °C and transforms into pure anatase TiO2 around 400 °C. The anatase phase further transforms into core/shell rutile/anatase TiO2 composite at 550 °C and displays the highest photocatalytic activity among the samples prepared. The high photocatalytic activity can be attributed to the improved charge separation at the rutile/anatase n/n junction interface and the high crystallinity of the sample after calcination.
doi_str_mv 10.1557/jmr.2012.239
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1289466806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_239</cupid><sourcerecordid>2897184151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-84531d83e45b73e6ca912d2958edcefcfef5d0f2ebcd537d77de89e80856f20a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs7f0DA9Yz5nMkspVgVKt3U9ZAmLzVlJhkzU6H_3pS6cOfqweXc--AgdE9JSaWsH_d9KhmhrGS8uUAzRoQoJGfVJZoRpUTBGiqu0c047gmhktRiht6XMfV68jHg6PDGrxkOOsQcQfK6G_G313jykw7-0GOYPo8dBMC77mhi5y1gCyb2Qxz9aeMWXblcgrvfO0cfy-fN4rVYrV_eFk-rwrCKTIUSklOrOAi5rTlURjeUWdZIBdaAMw6ctMQx2BoreW3r2oJqQBElK8eI5nP0cN4dUvw6wDi1-3hIIb9sKVONqCpFqkwVZ2ockg87SH8o0p6MtdlYezLWZmOZL8-80f02ebuDfwo_T3pvRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289466806</pqid></control><display><type>article</type><title>Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition</title><source>Cambridge Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xia, Ting ; Otto, Joseph W. ; Dutta, Tanmoy ; Murowchick, James ; Caruso, Anthony N. ; Peng, Zhonghua ; Chen, Xiaobo</creator><creatorcontrib>Xia, Ting ; Otto, Joseph W. ; Dutta, Tanmoy ; Murowchick, James ; Caruso, Anthony N. ; Peng, Zhonghua ; Chen, Xiaobo</creatorcontrib><description>Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temperatures. The structural, optical, and photocatalytic properties of the TiO2 nanomaterials were studied with x-ray diffraction, Raman spectroscopy, transmission electron microscopy, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, x-ray and ultraviolet (UV) photoemission spectroscopy, UV–vis diffusive reflectance, and photocatalytic decomposition of methylene blue. We found that the titanium ethylene glycolide decomposes at 330 °C and transforms into pure anatase TiO2 around 400 °C. The anatase phase further transforms into core/shell rutile/anatase TiO2 composite at 550 °C and displays the highest photocatalytic activity among the samples prepared. The high photocatalytic activity can be attributed to the improved charge separation at the rutile/anatase n/n junction interface and the high crystallinity of the sample after calcination.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.239</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Decomposition ; Grain size ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanomaterials ; Nanotechnology ; Photocatalysis ; Polymerization ; Spectrum analysis ; Titanium</subject><ispartof>Journal of materials research, 2013-02, Vol.28 (3), p.326-332</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-84531d83e45b73e6ca912d2958edcefcfef5d0f2ebcd537d77de89e80856f20a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2012.239$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291412002397/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Xia, Ting</creatorcontrib><creatorcontrib>Otto, Joseph W.</creatorcontrib><creatorcontrib>Dutta, Tanmoy</creatorcontrib><creatorcontrib>Murowchick, James</creatorcontrib><creatorcontrib>Caruso, Anthony N.</creatorcontrib><creatorcontrib>Peng, Zhonghua</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><title>Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temperatures. The structural, optical, and photocatalytic properties of the TiO2 nanomaterials were studied with x-ray diffraction, Raman spectroscopy, transmission electron microscopy, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, x-ray and ultraviolet (UV) photoemission spectroscopy, UV–vis diffusive reflectance, and photocatalytic decomposition of methylene blue. We found that the titanium ethylene glycolide decomposes at 330 °C and transforms into pure anatase TiO2 around 400 °C. The anatase phase further transforms into core/shell rutile/anatase TiO2 composite at 550 °C and displays the highest photocatalytic activity among the samples prepared. The high photocatalytic activity can be attributed to the improved charge separation at the rutile/anatase n/n junction interface and the high crystallinity of the sample after calcination.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Decomposition</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Photocatalysis</subject><subject>Polymerization</subject><subject>Spectrum analysis</subject><subject>Titanium</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LAzEURYMoWKs7f0DA9Yz5nMkspVgVKt3U9ZAmLzVlJhkzU6H_3pS6cOfqweXc--AgdE9JSaWsH_d9KhmhrGS8uUAzRoQoJGfVJZoRpUTBGiqu0c047gmhktRiht6XMfV68jHg6PDGrxkOOsQcQfK6G_G313jykw7-0GOYPo8dBMC77mhi5y1gCyb2Qxz9aeMWXblcgrvfO0cfy-fN4rVYrV_eFk-rwrCKTIUSklOrOAi5rTlURjeUWdZIBdaAMw6ctMQx2BoreW3r2oJqQBElK8eI5nP0cN4dUvw6wDi1-3hIIb9sKVONqCpFqkwVZ2ockg87SH8o0p6MtdlYezLWZmOZL8-80f02ebuDfwo_T3pvRg</recordid><startdate>20130214</startdate><enddate>20130214</enddate><creator>Xia, Ting</creator><creator>Otto, Joseph W.</creator><creator>Dutta, Tanmoy</creator><creator>Murowchick, James</creator><creator>Caruso, Anthony N.</creator><creator>Peng, Zhonghua</creator><creator>Chen, Xiaobo</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130214</creationdate><title>Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition</title><author>Xia, Ting ; Otto, Joseph W. ; Dutta, Tanmoy ; Murowchick, James ; Caruso, Anthony N. ; Peng, Zhonghua ; Chen, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-84531d83e45b73e6ca912d2958edcefcfef5d0f2ebcd537d77de89e80856f20a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Decomposition</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Photocatalysis</topic><topic>Polymerization</topic><topic>Spectrum analysis</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ting</creatorcontrib><creatorcontrib>Otto, Joseph W.</creatorcontrib><creatorcontrib>Dutta, Tanmoy</creatorcontrib><creatorcontrib>Murowchick, James</creatorcontrib><creatorcontrib>Caruso, Anthony N.</creatorcontrib><creatorcontrib>Peng, Zhonghua</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ting</au><au>Otto, Joseph W.</au><au>Dutta, Tanmoy</au><au>Murowchick, James</au><au>Caruso, Anthony N.</au><au>Peng, Zhonghua</au><au>Chen, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2013-02-14</date><risdate>2013</risdate><volume>28</volume><issue>3</issue><spage>326</spage><epage>332</epage><pages>326-332</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temperatures. The structural, optical, and photocatalytic properties of the TiO2 nanomaterials were studied with x-ray diffraction, Raman spectroscopy, transmission electron microscopy, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, x-ray and ultraviolet (UV) photoemission spectroscopy, UV–vis diffusive reflectance, and photocatalytic decomposition of methylene blue. We found that the titanium ethylene glycolide decomposes at 330 °C and transforms into pure anatase TiO2 around 400 °C. The anatase phase further transforms into core/shell rutile/anatase TiO2 composite at 550 °C and displays the highest photocatalytic activity among the samples prepared. The high photocatalytic activity can be attributed to the improved charge separation at the rutile/anatase n/n junction interface and the high crystallinity of the sample after calcination.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.239</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2013-02, Vol.28 (3), p.326-332
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1289466806
source Cambridge Journals; SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Biomaterials
Decomposition
Grain size
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanomaterials
Nanotechnology
Photocatalysis
Polymerization
Spectrum analysis
Titanium
title Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20TiO2%20nanomaterials%20via%20titanium%20ethylene%20glycolide%20decomposition&rft.jtitle=Journal%20of%20materials%20research&rft.au=Xia,%20Ting&rft.date=2013-02-14&rft.volume=28&rft.issue=3&rft.spage=326&rft.epage=332&rft.pages=326-332&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.239&rft_dat=%3Cproquest_sprin%3E2897184151%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289466806&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_239&rfr_iscdi=true