Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications

The development of substoichiometric TiO2-based nanostructured materials with high aspect ratios for future proton exchange membrane fuel cells is investigated. Nanostructures were manufactured using atomic layer deposition of TiO2 over both anodic aluminum oxide templates and silicon nanowires. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2013-02, Vol.28 (3), p.461-467
Hauptverfasser: Phillips, Richard, O’Toole, Alexander, He, Xiaoli, Hansen, Robin, Geer, Robert, Eisenbraun, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 3
container_start_page 461
container_title Journal of materials research
container_volume 28
creator Phillips, Richard
O’Toole, Alexander
He, Xiaoli
Hansen, Robin
Geer, Robert
Eisenbraun, Eric
description The development of substoichiometric TiO2-based nanostructured materials with high aspect ratios for future proton exchange membrane fuel cells is investigated. Nanostructures were manufactured using atomic layer deposition of TiO2 over both anodic aluminum oxide templates and silicon nanowires. It was observed in this work that nanostructures with aspect ratios of 100:1 can be fabricated using both methods. The conductivity of TiO2 films was enhanced following a postdeposition reducing anneal (at 450 °C in H2). Liquid phase-deposited Pt and plasma-enhanced atomic layer deposition of Pt were both found to be appropriate suited for metallization of TiO2 structures.
doi_str_mv 10.1557/jmr.2012.324
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1289466621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_324</cupid><sourcerecordid>2897184251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-e7c8f58ab367b227dd1497ba2f130ee36d2f506dbfa9089ccdbc8438bdf236583</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWw4wMssU7xK4mzRFV5SEXtoqwjP4urNA62Uwm-HpeyYMdqRjNnrjQHgFuMZrgs6_vdPswIwmRGCTsDE4IYK0pKqnMwQZyzgjSYXYKrGHcI4RLVbAIO6-CVidH1Wyh6De3Yq-R8Lzr3JY4N9BYq3-sxjw8GxlHG5J16d35vUnAKbtyKQCWS6D5jyvth8CFFaH2A68VrDjQdVKbroBiGzqmf0HgNLqzoorn5rVPw9rjYzJ-L5erpZf6wLBRuUCpMrbgtuZC0qiUhtdaYNbUUxGKKjKGVJrZElZZWNIg3SmmpOKNcaktoVXI6BXen3CH4j9HE1O78GPJ3scWEN6yqKoIzVZyoOIQswoQ_FGqPatustj2qbbPazM9OvBJ7GZzemn8OvgH0qX6y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289466621</pqid></control><display><type>article</type><title>Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications</title><source>SpringerLink Journals</source><source>Cambridge University Press Journals Complete</source><creator>Phillips, Richard ; O’Toole, Alexander ; He, Xiaoli ; Hansen, Robin ; Geer, Robert ; Eisenbraun, Eric</creator><creatorcontrib>Phillips, Richard ; O’Toole, Alexander ; He, Xiaoli ; Hansen, Robin ; Geer, Robert ; Eisenbraun, Eric</creatorcontrib><description>The development of substoichiometric TiO2-based nanostructured materials with high aspect ratios for future proton exchange membrane fuel cells is investigated. Nanostructures were manufactured using atomic layer deposition of TiO2 over both anodic aluminum oxide templates and silicon nanowires. It was observed in this work that nanostructures with aspect ratios of 100:1 can be fabricated using both methods. The conductivity of TiO2 films was enhanced following a postdeposition reducing anneal (at 450 °C in H2). Liquid phase-deposited Pt and plasma-enhanced atomic layer deposition of Pt were both found to be appropriate suited for metallization of TiO2 structures.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.324</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aluminum ; Applied and Technical Physics ; Biomaterials ; Carbon ; Chemical vapor deposition ; Conductivity ; Corrosion ; Electrodes ; Electrolytes ; Experiments ; Fuel cells ; Gases ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nanowires ; Studies</subject><ispartof>Journal of materials research, 2013-02, Vol.28 (3), p.461-467</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-e7c8f58ab367b227dd1497ba2f130ee36d2f506dbfa9089ccdbc8438bdf236583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2012.324$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088429141200324X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Phillips, Richard</creatorcontrib><creatorcontrib>O’Toole, Alexander</creatorcontrib><creatorcontrib>He, Xiaoli</creatorcontrib><creatorcontrib>Hansen, Robin</creatorcontrib><creatorcontrib>Geer, Robert</creatorcontrib><creatorcontrib>Eisenbraun, Eric</creatorcontrib><title>Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>The development of substoichiometric TiO2-based nanostructured materials with high aspect ratios for future proton exchange membrane fuel cells is investigated. Nanostructures were manufactured using atomic layer deposition of TiO2 over both anodic aluminum oxide templates and silicon nanowires. It was observed in this work that nanostructures with aspect ratios of 100:1 can be fabricated using both methods. The conductivity of TiO2 films was enhanced following a postdeposition reducing anneal (at 450 °C in H2). Liquid phase-deposited Pt and plasma-enhanced atomic layer deposition of Pt were both found to be appropriate suited for metallization of TiO2 structures.</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Conductivity</subject><subject>Corrosion</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Experiments</subject><subject>Fuel cells</subject><subject>Gases</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkMtOwzAQRS0EEqWw4wMssU7xK4mzRFV5SEXtoqwjP4urNA62Uwm-HpeyYMdqRjNnrjQHgFuMZrgs6_vdPswIwmRGCTsDE4IYK0pKqnMwQZyzgjSYXYKrGHcI4RLVbAIO6-CVidH1Wyh6De3Yq-R8Lzr3JY4N9BYq3-sxjw8GxlHG5J16d35vUnAKbtyKQCWS6D5jyvth8CFFaH2A68VrDjQdVKbroBiGzqmf0HgNLqzoorn5rVPw9rjYzJ-L5erpZf6wLBRuUCpMrbgtuZC0qiUhtdaYNbUUxGKKjKGVJrZElZZWNIg3SmmpOKNcaktoVXI6BXen3CH4j9HE1O78GPJ3scWEN6yqKoIzVZyoOIQswoQ_FGqPatustj2qbbPazM9OvBJ7GZzemn8OvgH0qX6y</recordid><startdate>20130214</startdate><enddate>20130214</enddate><creator>Phillips, Richard</creator><creator>O’Toole, Alexander</creator><creator>He, Xiaoli</creator><creator>Hansen, Robin</creator><creator>Geer, Robert</creator><creator>Eisenbraun, Eric</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130214</creationdate><title>Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications</title><author>Phillips, Richard ; O’Toole, Alexander ; He, Xiaoli ; Hansen, Robin ; Geer, Robert ; Eisenbraun, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-e7c8f58ab367b227dd1497ba2f130ee36d2f506dbfa9089ccdbc8438bdf236583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Conductivity</topic><topic>Corrosion</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Experiments</topic><topic>Fuel cells</topic><topic>Gases</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Richard</creatorcontrib><creatorcontrib>O’Toole, Alexander</creatorcontrib><creatorcontrib>He, Xiaoli</creatorcontrib><creatorcontrib>Hansen, Robin</creatorcontrib><creatorcontrib>Geer, Robert</creatorcontrib><creatorcontrib>Eisenbraun, Eric</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Richard</au><au>O’Toole, Alexander</au><au>He, Xiaoli</au><au>Hansen, Robin</au><au>Geer, Robert</au><au>Eisenbraun, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2013-02-14</date><risdate>2013</risdate><volume>28</volume><issue>3</issue><spage>461</spage><epage>467</epage><pages>461-467</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>The development of substoichiometric TiO2-based nanostructured materials with high aspect ratios for future proton exchange membrane fuel cells is investigated. Nanostructures were manufactured using atomic layer deposition of TiO2 over both anodic aluminum oxide templates and silicon nanowires. It was observed in this work that nanostructures with aspect ratios of 100:1 can be fabricated using both methods. The conductivity of TiO2 films was enhanced following a postdeposition reducing anneal (at 450 °C in H2). Liquid phase-deposited Pt and plasma-enhanced atomic layer deposition of Pt were both found to be appropriate suited for metallization of TiO2 structures.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.324</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2013-02, Vol.28 (3), p.461-467
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1289466621
source SpringerLink Journals; Cambridge University Press Journals Complete
subjects Aluminum
Applied and Technical Physics
Biomaterials
Carbon
Chemical vapor deposition
Conductivity
Corrosion
Electrodes
Electrolytes
Experiments
Fuel cells
Gases
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanotechnology
Nanowires
Studies
title Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20and%20functionalization%20of%20conductive%20substoichiometric%20TiO2%20catalyst%20supports%20for%20PEM%20fuel%20cell%20applications&rft.jtitle=Journal%20of%20materials%20research&rft.au=Phillips,%20Richard&rft.date=2013-02-14&rft.volume=28&rft.issue=3&rft.spage=461&rft.epage=467&rft.pages=461-467&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.324&rft_dat=%3Cproquest_sprin%3E2897184251%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289466621&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_324&rfr_iscdi=true