Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study

The geometric parameters, electronic structures, and haptotropic migration of a series of hypothetical compounds of general formula CpM(C13H9N) and (CO)3M(C13H9N) (M = fist row transition metal, Cp = C5H5, and C13H9N = phenanthridine ligand) are investigated by means of the density functional theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2013-04, Vol.113 (7), p.985-996
Hauptverfasser: Benmachiche, Akila, Zendaoui, Saber-Mustapha, Bouaoud, Salah-Eddine, Zouchoune, Bachir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 996
container_issue 7
container_start_page 985
container_title International journal of quantum chemistry
container_volume 113
creator Benmachiche, Akila
Zendaoui, Saber-Mustapha
Bouaoud, Salah-Eddine
Zouchoune, Bachir
description The geometric parameters, electronic structures, and haptotropic migration of a series of hypothetical compounds of general formula CpM(C13H9N) and (CO)3M(C13H9N) (M = fist row transition metal, Cp = C5H5, and C13H9N = phenanthridine ligand) are investigated by means of the density functional theory. The phenanthridine ligand can bind to the metal through η1 to η6 coordination mode, in agreement with the electron count and the nature of the metal, showing its capability to adapt itself to the electronic demand of the metal as well as to the polycyclic aromatic hydrocarbons. In the investigated species, the most favored closed‐shell count is 18‐electron except for the Ti and V models which are deficient open‐shell 16‐electron configuration. This study has shown the difference in coordination ability of this heteropolycyclic ligand: the coordination of the central C5N ring is less favored than the terminal C6 rings, in agreement with the π‐electron density localization. Most of the investigated complexes are expected to exhibit a rich fluxional behavior. This flexibility favors the possibility for the existence of several isomers as well as their interconversion through haptotropic shifts. © 2012 Wiley Periodicals, Inc. The origin of the very rich coordination chemistry of phenanthridine can be explained in large part due to the very large electronic and structural flexibility of this molecule, which is able to adapt to the electronic demand of the metal. The C6 and C5N rings of phenanthridine can be coordinated in various hapticities, depending on the nature of the ML n moiety. This flexibility favors the possibility of existence of several isomers of comparable energy.
doi_str_mv 10.1002/qua.24071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1289171055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896840401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3351-99b701cf9e68a6a53015b6cec0ed4d5aea47cd83f17e2b43fce0aa0d33a323853</originalsourceid><addsrcrecordid>eNp1kEtPGzEUha2qSE0DC_6Bpa66GLgez4xnuosoT_EQKAjUjeV47jSmEzvYHoUs-O84pO2O1V2c7ztXOoTsMzhgAPnh86AO8gIE-0RGDBqRFRV7_ExGKYNMVFB_IV9DeAKAildiRF6Pe9TRO2s0DdEPOg4eqbIt1c751lgVjbNUz3FhUr6mrqPLOVpl49yblCPtze8NbyztjA8x825Fo1c2mHd1gVH1qW2x7PEFww86oT9PpunZ0K53yU6n-oB7f--Y3J8cT4_Ossub0_OjyWWmOS9Z1jQzAUx3DVa1qlTJgZWzSqMGbIu2VKgKoduad0xgPit4pxGUgpZzxXNel3xMvm17l949DxiifHKDt-mlZHndMMGg3FDft5T2LgSPnVx6s1B-LRnIzboyrSvf103s4ZZdmR7XH4Py9n7yz8i2RtoRX_4byv-RleCilA_Xp7L8dVVcFM2dnPI3SNeNpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289171055</pqid></control><display><type>article</type><title>Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study</title><source>Wiley Journals</source><creator>Benmachiche, Akila ; Zendaoui, Saber-Mustapha ; Bouaoud, Salah-Eddine ; Zouchoune, Bachir</creator><creatorcontrib>Benmachiche, Akila ; Zendaoui, Saber-Mustapha ; Bouaoud, Salah-Eddine ; Zouchoune, Bachir</creatorcontrib><description>The geometric parameters, electronic structures, and haptotropic migration of a series of hypothetical compounds of general formula CpM(C13H9N) and (CO)3M(C13H9N) (M = fist row transition metal, Cp = C5H5, and C13H9N = phenanthridine ligand) are investigated by means of the density functional theory. The phenanthridine ligand can bind to the metal through η1 to η6 coordination mode, in agreement with the electron count and the nature of the metal, showing its capability to adapt itself to the electronic demand of the metal as well as to the polycyclic aromatic hydrocarbons. In the investigated species, the most favored closed‐shell count is 18‐electron except for the Ti and V models which are deficient open‐shell 16‐electron configuration. This study has shown the difference in coordination ability of this heteropolycyclic ligand: the coordination of the central C5N ring is less favored than the terminal C6 rings, in agreement with the π‐electron density localization. Most of the investigated complexes are expected to exhibit a rich fluxional behavior. This flexibility favors the possibility for the existence of several isomers as well as their interconversion through haptotropic shifts. © 2012 Wiley Periodicals, Inc. The origin of the very rich coordination chemistry of phenanthridine can be explained in large part due to the very large electronic and structural flexibility of this molecule, which is able to adapt to the electronic demand of the metal. The C6 and C5N rings of phenanthridine can be coordinated in various hapticities, depending on the nature of the ML n moiety. This flexibility favors the possibility of existence of several isomers of comparable energy.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.24071</identifier><identifier>CODEN: IJQCB2</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>bonding analysis ; Chemistry ; coordination chemistry haptotropic migration ; density functional theory ; electronic structure ; Ligands ; Physical chemistry ; Polycyclic aromatic hydrocarbons ; Quantum physics ; Studies</subject><ispartof>International journal of quantum chemistry, 2013-04, Vol.113 (7), p.985-996</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3351-99b701cf9e68a6a53015b6cec0ed4d5aea47cd83f17e2b43fce0aa0d33a323853</citedby><cites>FETCH-LOGICAL-c3351-99b701cf9e68a6a53015b6cec0ed4d5aea47cd83f17e2b43fce0aa0d33a323853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.24071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.24071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Benmachiche, Akila</creatorcontrib><creatorcontrib>Zendaoui, Saber-Mustapha</creatorcontrib><creatorcontrib>Bouaoud, Salah-Eddine</creatorcontrib><creatorcontrib>Zouchoune, Bachir</creatorcontrib><title>Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>The geometric parameters, electronic structures, and haptotropic migration of a series of hypothetical compounds of general formula CpM(C13H9N) and (CO)3M(C13H9N) (M = fist row transition metal, Cp = C5H5, and C13H9N = phenanthridine ligand) are investigated by means of the density functional theory. The phenanthridine ligand can bind to the metal through η1 to η6 coordination mode, in agreement with the electron count and the nature of the metal, showing its capability to adapt itself to the electronic demand of the metal as well as to the polycyclic aromatic hydrocarbons. In the investigated species, the most favored closed‐shell count is 18‐electron except for the Ti and V models which are deficient open‐shell 16‐electron configuration. This study has shown the difference in coordination ability of this heteropolycyclic ligand: the coordination of the central C5N ring is less favored than the terminal C6 rings, in agreement with the π‐electron density localization. Most of the investigated complexes are expected to exhibit a rich fluxional behavior. This flexibility favors the possibility for the existence of several isomers as well as their interconversion through haptotropic shifts. © 2012 Wiley Periodicals, Inc. The origin of the very rich coordination chemistry of phenanthridine can be explained in large part due to the very large electronic and structural flexibility of this molecule, which is able to adapt to the electronic demand of the metal. The C6 and C5N rings of phenanthridine can be coordinated in various hapticities, depending on the nature of the ML n moiety. This flexibility favors the possibility of existence of several isomers of comparable energy.</description><subject>bonding analysis</subject><subject>Chemistry</subject><subject>coordination chemistry haptotropic migration</subject><subject>density functional theory</subject><subject>electronic structure</subject><subject>Ligands</subject><subject>Physical chemistry</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Quantum physics</subject><subject>Studies</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPGzEUha2qSE0DC_6Bpa66GLgez4xnuosoT_EQKAjUjeV47jSmEzvYHoUs-O84pO2O1V2c7ztXOoTsMzhgAPnh86AO8gIE-0RGDBqRFRV7_ExGKYNMVFB_IV9DeAKAildiRF6Pe9TRO2s0DdEPOg4eqbIt1c751lgVjbNUz3FhUr6mrqPLOVpl49yblCPtze8NbyztjA8x825Fo1c2mHd1gVH1qW2x7PEFww86oT9PpunZ0K53yU6n-oB7f--Y3J8cT4_Ossub0_OjyWWmOS9Z1jQzAUx3DVa1qlTJgZWzSqMGbIu2VKgKoduad0xgPit4pxGUgpZzxXNel3xMvm17l949DxiifHKDt-mlZHndMMGg3FDft5T2LgSPnVx6s1B-LRnIzboyrSvf103s4ZZdmR7XH4Py9n7yz8i2RtoRX_4byv-RleCilA_Xp7L8dVVcFM2dnPI3SNeNpQ</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Benmachiche, Akila</creator><creator>Zendaoui, Saber-Mustapha</creator><creator>Bouaoud, Salah-Eddine</creator><creator>Zouchoune, Bachir</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130405</creationdate><title>Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study</title><author>Benmachiche, Akila ; Zendaoui, Saber-Mustapha ; Bouaoud, Salah-Eddine ; Zouchoune, Bachir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3351-99b701cf9e68a6a53015b6cec0ed4d5aea47cd83f17e2b43fce0aa0d33a323853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bonding analysis</topic><topic>Chemistry</topic><topic>coordination chemistry haptotropic migration</topic><topic>density functional theory</topic><topic>electronic structure</topic><topic>Ligands</topic><topic>Physical chemistry</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Quantum physics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benmachiche, Akila</creatorcontrib><creatorcontrib>Zendaoui, Saber-Mustapha</creatorcontrib><creatorcontrib>Bouaoud, Salah-Eddine</creatorcontrib><creatorcontrib>Zouchoune, Bachir</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benmachiche, Akila</au><au>Zendaoui, Saber-Mustapha</au><au>Bouaoud, Salah-Eddine</au><au>Zouchoune, Bachir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>113</volume><issue>7</issue><spage>985</spage><epage>996</epage><pages>985-996</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><coden>IJQCB2</coden><abstract>The geometric parameters, electronic structures, and haptotropic migration of a series of hypothetical compounds of general formula CpM(C13H9N) and (CO)3M(C13H9N) (M = fist row transition metal, Cp = C5H5, and C13H9N = phenanthridine ligand) are investigated by means of the density functional theory. The phenanthridine ligand can bind to the metal through η1 to η6 coordination mode, in agreement with the electron count and the nature of the metal, showing its capability to adapt itself to the electronic demand of the metal as well as to the polycyclic aromatic hydrocarbons. In the investigated species, the most favored closed‐shell count is 18‐electron except for the Ti and V models which are deficient open‐shell 16‐electron configuration. This study has shown the difference in coordination ability of this heteropolycyclic ligand: the coordination of the central C5N ring is less favored than the terminal C6 rings, in agreement with the π‐electron density localization. Most of the investigated complexes are expected to exhibit a rich fluxional behavior. This flexibility favors the possibility for the existence of several isomers as well as their interconversion through haptotropic shifts. © 2012 Wiley Periodicals, Inc. The origin of the very rich coordination chemistry of phenanthridine can be explained in large part due to the very large electronic and structural flexibility of this molecule, which is able to adapt to the electronic demand of the metal. The C6 and C5N rings of phenanthridine can be coordinated in various hapticities, depending on the nature of the ML n moiety. This flexibility favors the possibility of existence of several isomers of comparable energy.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.24071</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2013-04, Vol.113 (7), p.985-996
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_1289171055
source Wiley Journals
subjects bonding analysis
Chemistry
coordination chemistry haptotropic migration
density functional theory
electronic structure
Ligands
Physical chemistry
Polycyclic aromatic hydrocarbons
Quantum physics
Studies
title Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: A DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20and%20coordination%20chemistry%20of%20phenanthridine%20ligand%20in%20first-row%20transition%20metal%20complexes:%20A%20DFT%20study&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Benmachiche,%20Akila&rft.date=2013-04-05&rft.volume=113&rft.issue=7&rft.spage=985&rft.epage=996&rft.pages=985-996&rft.issn=0020-7608&rft.eissn=1097-461X&rft.coden=IJQCB2&rft_id=info:doi/10.1002/qua.24071&rft_dat=%3Cproquest_cross%3E2896840401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289171055&rft_id=info:pmid/&rfr_iscdi=true