A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25

The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2013-03, Vol.344 (1), p.5-11
Hauptverfasser: Attia, Abdel-Fattah, Ismail, Hamed A., Basurah, Hassan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 5
container_title Astrophysics and space science
container_volume 344
creator Attia, Abdel-Fattah
Ismail, Hamed A.
Basurah, Hassan M.
description The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of network inputs for the sunspots data series is obtained based on sequential forward search for the Neuro-Fuzzy model. According to the model prediction the maximum amplitudes of the cycles 24 and 25 will occur in the year 2013 and year 2022 with peaks of 101±8 and 90.7±8, respectively. The correlation and error analysis are discussed to ensure the performance of the proposed Neuro-Fuzzy approach as a predictor for sunspot time series. The correlation coefficient between Neuro-Fuzzy model forecasted sunspot number values with the actual ones is 0.96.
doi_str_mv 10.1007/s10509-012-1300-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1286948039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889969131</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-e6af84c92eee35eda5637a08709006580b5d75be37218ec175990321bdadea563</originalsourceid><addsrcrecordid>eNpNkMFKAzEURYMoWKsf4C7gOvqSTJLJSkqxKhTdKHQXMpM3MmWcjEln0X69U-rC1ePC4V7eIeSWwz0HMA-ZgwLLgAvGJQDTZ2TGlRHMFnpzTmYAUDBdwOaSXOW8naLV1szI44K-4ZgiW42Hw55-x4Bd23_RJiY6JAxtvWtjT2NDc-x8ovW-7jBTUVDfByrUNblofJfx5u_Oyefq6WP5wtbvz6_LxZoNXOkdQ-2bsqitQESpMHilpfFQGrAAWpVQqWBUhdIIXmLNjbIWpOBV8AGP8JzcnXqHFH9GzDu3jWPqp0nHRaltUYK0EyVOVB7S9AWmfxS4oyh3EuUmUe4oymn5Cw8RWTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286948039</pqid></control><display><type>article</type><title>A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25</title><source>Springer Nature - Complete Springer Journals</source><creator>Attia, Abdel-Fattah ; Ismail, Hamed A. ; Basurah, Hassan M.</creator><creatorcontrib>Attia, Abdel-Fattah ; Ismail, Hamed A. ; Basurah, Hassan M.</creatorcontrib><description>The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of network inputs for the sunspots data series is obtained based on sequential forward search for the Neuro-Fuzzy model. According to the model prediction the maximum amplitudes of the cycles 24 and 25 will occur in the year 2013 and year 2022 with peaks of 101±8 and 90.7±8, respectively. The correlation and error analysis are discussed to ensure the performance of the proposed Neuro-Fuzzy approach as a predictor for sunspot time series. The correlation coefficient between Neuro-Fuzzy model forecasted sunspot number values with the actual ones is 0.96.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-012-1300-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Correlation coefficient ; Cosmology ; Fuzzy logic ; Mathematical models ; Observations and Techniques ; Original Article ; Physics ; Physics and Astronomy ; Solar energy ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Time series</subject><ispartof>Astrophysics and space science, 2013-03, Vol.344 (1), p.5-11</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10509-012-1300-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10509-012-1300-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Attia, Abdel-Fattah</creatorcontrib><creatorcontrib>Ismail, Hamed A.</creatorcontrib><creatorcontrib>Basurah, Hassan M.</creatorcontrib><title>A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of network inputs for the sunspots data series is obtained based on sequential forward search for the Neuro-Fuzzy model. According to the model prediction the maximum amplitudes of the cycles 24 and 25 will occur in the year 2013 and year 2022 with peaks of 101±8 and 90.7±8, respectively. The correlation and error analysis are discussed to ensure the performance of the proposed Neuro-Fuzzy approach as a predictor for sunspot time series. The correlation coefficient between Neuro-Fuzzy model forecasted sunspot number values with the actual ones is 0.96.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Correlation coefficient</subject><subject>Cosmology</subject><subject>Fuzzy logic</subject><subject>Mathematical models</subject><subject>Observations and Techniques</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar energy</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Time series</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMFKAzEURYMoWKsf4C7gOvqSTJLJSkqxKhTdKHQXMpM3MmWcjEln0X69U-rC1ePC4V7eIeSWwz0HMA-ZgwLLgAvGJQDTZ2TGlRHMFnpzTmYAUDBdwOaSXOW8naLV1szI44K-4ZgiW42Hw55-x4Bd23_RJiY6JAxtvWtjT2NDc-x8ovW-7jBTUVDfByrUNblofJfx5u_Oyefq6WP5wtbvz6_LxZoNXOkdQ-2bsqitQESpMHilpfFQGrAAWpVQqWBUhdIIXmLNjbIWpOBV8AGP8JzcnXqHFH9GzDu3jWPqp0nHRaltUYK0EyVOVB7S9AWmfxS4oyh3EuUmUe4oymn5Cw8RWTs</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Attia, Abdel-Fattah</creator><creator>Ismail, Hamed A.</creator><creator>Basurah, Hassan M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130301</creationdate><title>A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25</title><author>Attia, Abdel-Fattah ; Ismail, Hamed A. ; Basurah, Hassan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-e6af84c92eee35eda5637a08709006580b5d75be37218ec175990321bdadea563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Correlation coefficient</topic><topic>Cosmology</topic><topic>Fuzzy logic</topic><topic>Mathematical models</topic><topic>Observations and Techniques</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar energy</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attia, Abdel-Fattah</creatorcontrib><creatorcontrib>Ismail, Hamed A.</creatorcontrib><creatorcontrib>Basurah, Hassan M.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attia, Abdel-Fattah</au><au>Ismail, Hamed A.</au><au>Basurah, Hassan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>344</volume><issue>1</issue><spage>5</spage><epage>11</epage><pages>5-11</pages><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of network inputs for the sunspots data series is obtained based on sequential forward search for the Neuro-Fuzzy model. According to the model prediction the maximum amplitudes of the cycles 24 and 25 will occur in the year 2013 and year 2022 with peaks of 101±8 and 90.7±8, respectively. The correlation and error analysis are discussed to ensure the performance of the proposed Neuro-Fuzzy approach as a predictor for sunspot time series. The correlation coefficient between Neuro-Fuzzy model forecasted sunspot number values with the actual ones is 0.96.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-012-1300-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2013-03, Vol.344 (1), p.5-11
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_journals_1286948039
source Springer Nature - Complete Springer Journals
subjects Astrobiology
Astronomy
Astrophysics
Astrophysics and Astroparticles
Correlation coefficient
Cosmology
Fuzzy logic
Mathematical models
Observations and Techniques
Original Article
Physics
Physics and Astronomy
Solar energy
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Time series
title A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neuro-Fuzzy%20modeling%20for%20prediction%20of%20solar%20cycles%2024%20and%2025&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Attia,%20Abdel-Fattah&rft.date=2013-03-01&rft.volume=344&rft.issue=1&rft.spage=5&rft.epage=11&rft.pages=5-11&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-012-1300-6&rft_dat=%3Cproquest_sprin%3E2889969131%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286948039&rft_id=info:pmid/&rfr_iscdi=true