EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING
We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic m...
Gespeichert in:
Veröffentlicht in: | Academia economic papers 2012-12, Vol.40 (4), p.559 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 559 |
container_title | Academia economic papers |
container_volume | 40 |
creator | Yeh, Jin-Huei Cheng, Nick Y P Wang, Jying-Nan |
description | We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT] |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1286687058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889317151</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-af66133e452a0b9f74c7302d7d73056654adee2f452cf478144ba1ba4f26b5673</originalsourceid><addsrcrecordid>eNotjU1rAjEYhENpoaL-h0DPgbz59rjEdQ24G1kD9SZZNzlIqdat_78p7VyeYQZmntAMDFAijITn4ikYAgqOr2g5TRdapCWTGmZI1-3e9c5WO7yurW_3_uCC8x2uujUuQedbZ3HT-_ewxRvf17Y6BNc1C_SS48eUlv-co7Cpg92SnW9-18hNgSAxKwWcJyFZpMMqa3HWnLJRjwVSKSnimBLLpT9noQ0IMUQYoshMDVJpPkdvf7O3-_Xrkabv0-X6uH-WxxMwo5TRVBr-A5eyPUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286687058</pqid></control><display><type>article</type><title>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yeh, Jin-Huei ; Cheng, Nick Y P ; Wang, Jying-Nan</creator><creatorcontrib>Yeh, Jin-Huei ; Cheng, Nick Y P ; Wang, Jying-Nan</creatorcontrib><description>We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1018-161X</identifier><identifier>EISSN: 1810-4851</identifier><language>chi ; eng</language><publisher>Taipei: Institute of Economics, Academia Sinica</publisher><subject>Decomposition ; Economic forecasting ; Economic growth ; Economic theory ; GDP ; Gross Domestic Product ; Studies</subject><ispartof>Academia economic papers, 2012-12, Vol.40 (4), p.559</ispartof><rights>Copyright Institute of Economics, Academia Sinica Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Yeh, Jin-Huei</creatorcontrib><creatorcontrib>Cheng, Nick Y P</creatorcontrib><creatorcontrib>Wang, Jying-Nan</creatorcontrib><title>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</title><title>Academia economic papers</title><description>We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]</description><subject>Decomposition</subject><subject>Economic forecasting</subject><subject>Economic growth</subject><subject>Economic theory</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Studies</subject><issn>1018-161X</issn><issn>1810-4851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotjU1rAjEYhENpoaL-h0DPgbz59rjEdQ24G1kD9SZZNzlIqdat_78p7VyeYQZmntAMDFAijITn4ikYAgqOr2g5TRdapCWTGmZI1-3e9c5WO7yurW_3_uCC8x2uujUuQedbZ3HT-_ewxRvf17Y6BNc1C_SS48eUlv-co7Cpg92SnW9-18hNgSAxKwWcJyFZpMMqa3HWnLJRjwVSKSnimBLLpT9noQ0IMUQYoshMDVJpPkdvf7O3-_Xrkabv0-X6uH-WxxMwo5TRVBr-A5eyPUU</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Yeh, Jin-Huei</creator><creator>Cheng, Nick Y P</creator><creator>Wang, Jying-Nan</creator><general>Institute of Economics, Academia Sinica</general><scope>3V.</scope><scope>7RO</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AXJJW</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FREBS</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20121201</creationdate><title>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</title><author>Yeh, Jin-Huei ; Cheng, Nick Y P ; Wang, Jying-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-af66133e452a0b9f74c7302d7d73056654adee2f452cf478144ba1ba4f26b5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2012</creationdate><topic>Decomposition</topic><topic>Economic forecasting</topic><topic>Economic growth</topic><topic>Economic theory</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Jin-Huei</creatorcontrib><creatorcontrib>Cheng, Nick Y P</creatorcontrib><creatorcontrib>Wang, Jying-Nan</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Asian Business Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Asian Business Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Asian & European Business Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Asian & European Business Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Academia economic papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Jin-Huei</au><au>Cheng, Nick Y P</au><au>Wang, Jying-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</atitle><jtitle>Academia economic papers</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>40</volume><issue>4</issue><spage>559</spage><pages>559-</pages><issn>1018-161X</issn><eissn>1810-4851</eissn><abstract>We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]</abstract><cop>Taipei</cop><pub>Institute of Economics, Academia Sinica</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-161X |
ispartof | Academia economic papers, 2012-12, Vol.40 (4), p.559 |
issn | 1018-161X 1810-4851 |
language | chi ; eng |
recordid | cdi_proquest_journals_1286687058 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Decomposition Economic forecasting Economic growth Economic theory GDP Gross Domestic Product Studies |
title | EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EMPIRICAL%20DECOMPOSITION%20AND%20ECONOMIC%20GROWTH%20FORECASTING&rft.jtitle=Academia%20economic%20papers&rft.au=Yeh,%20Jin-Huei&rft.date=2012-12-01&rft.volume=40&rft.issue=4&rft.spage=559&rft.pages=559-&rft.issn=1018-161X&rft.eissn=1810-4851&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889317151%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286687058&rft_id=info:pmid/&rfr_iscdi=true |