EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING

We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academia economic papers 2012-12, Vol.40 (4), p.559
Hauptverfasser: Yeh, Jin-Huei, Cheng, Nick Y P, Wang, Jying-Nan
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 559
container_title Academia economic papers
container_volume 40
creator Yeh, Jin-Huei
Cheng, Nick Y P
Wang, Jying-Nan
description We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1286687058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889317151</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-af66133e452a0b9f74c7302d7d73056654adee2f452cf478144ba1ba4f26b5673</originalsourceid><addsrcrecordid>eNotjU1rAjEYhENpoaL-h0DPgbz59rjEdQ24G1kD9SZZNzlIqdat_78p7VyeYQZmntAMDFAijITn4ikYAgqOr2g5TRdapCWTGmZI1-3e9c5WO7yurW_3_uCC8x2uujUuQedbZ3HT-_ewxRvf17Y6BNc1C_SS48eUlv-co7Cpg92SnW9-18hNgSAxKwWcJyFZpMMqa3HWnLJRjwVSKSnimBLLpT9noQ0IMUQYoshMDVJpPkdvf7O3-_Xrkabv0-X6uH-WxxMwo5TRVBr-A5eyPUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286687058</pqid></control><display><type>article</type><title>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yeh, Jin-Huei ; Cheng, Nick Y P ; Wang, Jying-Nan</creator><creatorcontrib>Yeh, Jin-Huei ; Cheng, Nick Y P ; Wang, Jying-Nan</creatorcontrib><description>We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1018-161X</identifier><identifier>EISSN: 1810-4851</identifier><language>chi ; eng</language><publisher>Taipei: Institute of Economics, Academia Sinica</publisher><subject>Decomposition ; Economic forecasting ; Economic growth ; Economic theory ; GDP ; Gross Domestic Product ; Studies</subject><ispartof>Academia economic papers, 2012-12, Vol.40 (4), p.559</ispartof><rights>Copyright Institute of Economics, Academia Sinica Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Yeh, Jin-Huei</creatorcontrib><creatorcontrib>Cheng, Nick Y P</creatorcontrib><creatorcontrib>Wang, Jying-Nan</creatorcontrib><title>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</title><title>Academia economic papers</title><description>We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]</description><subject>Decomposition</subject><subject>Economic forecasting</subject><subject>Economic growth</subject><subject>Economic theory</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Studies</subject><issn>1018-161X</issn><issn>1810-4851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotjU1rAjEYhENpoaL-h0DPgbz59rjEdQ24G1kD9SZZNzlIqdat_78p7VyeYQZmntAMDFAijITn4ikYAgqOr2g5TRdapCWTGmZI1-3e9c5WO7yurW_3_uCC8x2uujUuQedbZ3HT-_ewxRvf17Y6BNc1C_SS48eUlv-co7Cpg92SnW9-18hNgSAxKwWcJyFZpMMqa3HWnLJRjwVSKSnimBLLpT9noQ0IMUQYoshMDVJpPkdvf7O3-_Xrkabv0-X6uH-WxxMwo5TRVBr-A5eyPUU</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Yeh, Jin-Huei</creator><creator>Cheng, Nick Y P</creator><creator>Wang, Jying-Nan</creator><general>Institute of Economics, Academia Sinica</general><scope>3V.</scope><scope>7RO</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AXJJW</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FREBS</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20121201</creationdate><title>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</title><author>Yeh, Jin-Huei ; Cheng, Nick Y P ; Wang, Jying-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-af66133e452a0b9f74c7302d7d73056654adee2f452cf478144ba1ba4f26b5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2012</creationdate><topic>Decomposition</topic><topic>Economic forecasting</topic><topic>Economic growth</topic><topic>Economic theory</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Jin-Huei</creatorcontrib><creatorcontrib>Cheng, Nick Y P</creatorcontrib><creatorcontrib>Wang, Jying-Nan</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Asian Business Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Asian Business Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Asian &amp; European Business Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Asian &amp; European Business Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Academia economic papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Jin-Huei</au><au>Cheng, Nick Y P</au><au>Wang, Jying-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING</atitle><jtitle>Academia economic papers</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>40</volume><issue>4</issue><spage>559</spage><pages>559-</pages><issn>1018-161X</issn><eissn>1810-4851</eissn><abstract>We use the empirical mode decomposition (EMD), specifically designed for decomposing nonstationary and nonlinear series by Huang et al. (1998), to disentangle and forecast Taiwan's real GDP growth. We find that the real GDP could be decomposed into six stationary and near-orthogonal intrinsic mode functions (IMFs), along with a nonlinear trend. Specifically, some IMFs have cyclical patterns similar to the Hodrick-Prescott filtered real GDP series under certain smoothing parameters. Based on the empirical stationarity and near-orthogonality of the IMFs, we can estimate and forecast these component series easily through simple time series models. In particular, our approach differs from the typical difference-first-then-fit recipes in that it retains all information and dynamic content of the original series instead of discarding partial information, which can be relevant for anticipating futures, due to differencing. By comparing with the other popular methodologies, linear or nonlinear, in predicting Taiwan's real GDP quarterly growth, our empirical results confirm the superior yet simple forecasting performance of the new approach. [PUBLICATION ABSTRACT]</abstract><cop>Taipei</cop><pub>Institute of Economics, Academia Sinica</pub></addata></record>
fulltext fulltext
identifier ISSN: 1018-161X
ispartof Academia economic papers, 2012-12, Vol.40 (4), p.559
issn 1018-161X
1810-4851
language chi ; eng
recordid cdi_proquest_journals_1286687058
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Decomposition
Economic forecasting
Economic growth
Economic theory
GDP
Gross Domestic Product
Studies
title EMPIRICAL DECOMPOSITION AND ECONOMIC GROWTH FORECASTING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EMPIRICAL%20DECOMPOSITION%20AND%20ECONOMIC%20GROWTH%20FORECASTING&rft.jtitle=Academia%20economic%20papers&rft.au=Yeh,%20Jin-Huei&rft.date=2012-12-01&rft.volume=40&rft.issue=4&rft.spage=559&rft.pages=559-&rft.issn=1018-161X&rft.eissn=1810-4851&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889317151%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286687058&rft_id=info:pmid/&rfr_iscdi=true