Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron
The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aqui...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2013-02, Vol.47 (3), p.1573-1580 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1580 |
---|---|
container_issue | 3 |
container_start_page | 1573 |
container_title | Environmental science & technology |
container_volume | 47 |
creator | Johnson, Richard L Nurmi, James T O’Brien Johnson, Graham S Fan, Dimin O’Brien Johnson, Reid L Shi, Zhenqing Salter-Blanc, Alexandra J Tratnyek, Paul G Lowry, Gregory V |
description | The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and |
doi_str_mv | 10.1021/es304564q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1284869399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885947491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMotlYX_gEZEBcuRpPcZB5LKVYLRRetIm6GPHHKdNImM2D99Y601oKry4GPcy4fQucE3xBMya0JgBlP2OoA9QmnOOYZJ4eojzGBOIfkrYdOQphjjCng7Bj1KAAhQNM-UqPSVDqeKlGZaOZFHZbON5Go9SZZ5xeiKV0dORsNhZfuc70wzce6Uqaq2soFE08bIcuq_DI6ehK1i96Nd_FrV1g30di7-hQdWVEFc7a9A_Qyup8NH-PJ88N4eDeJBaTQxFxnBEuiMeY0zRUTVunE5ACQa8EkVcZKLWQmOVMyYcDBssRapVKb5YwqGKDLTe_Su1VrQlPMXevrbrIgNGNZkkOed9T1hlLeheCNLZa-XAi_LggufnQWO50de7FtbOXC6B35668DrraACJ1C2ylTZfjjUgKcpXucUGHvq3-D3-FeikQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284869399</pqid></control><display><type>article</type><title>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Johnson, Richard L ; Nurmi, James T ; O’Brien Johnson, Graham S ; Fan, Dimin ; O’Brien Johnson, Reid L ; Shi, Zhenqing ; Salter-Blanc, Alexandra J ; Tratnyek, Paul G ; Lowry, Gregory V</creator><creatorcontrib>Johnson, Richard L ; Nurmi, James T ; O’Brien Johnson, Graham S ; Fan, Dimin ; O’Brien Johnson, Reid L ; Shi, Zhenqing ; Salter-Blanc, Alexandra J ; Tratnyek, Paul G ; Lowry, Gregory V</creatorcontrib><description>The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer “reductant demand”. To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es304564q</identifier><identifier>PMID: 23311327</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Aquifers ; Carboxymethylcellulose Sodium - chemistry ; Earth sciences ; Earth, ocean, space ; Electric Conductivity ; Electrodes ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Groundwater flow ; Groundwaters ; Hydraulics ; Hydrogen ; Iron ; Iron - chemistry ; Motion ; Nanoparticles - chemistry ; Natural water pollution ; Oxidation ; Oxygen - analysis ; Pollution ; Pollution, environment geology ; Solubility ; Time Factors ; Water - chemistry ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2013-02, Vol.47 (3), p.1573-1580</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 5, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</citedby><cites>FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es304564q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es304564q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27135477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23311327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Richard L</creatorcontrib><creatorcontrib>Nurmi, James T</creatorcontrib><creatorcontrib>O’Brien Johnson, Graham S</creatorcontrib><creatorcontrib>Fan, Dimin</creatorcontrib><creatorcontrib>O’Brien Johnson, Reid L</creatorcontrib><creatorcontrib>Shi, Zhenqing</creatorcontrib><creatorcontrib>Salter-Blanc, Alexandra J</creatorcontrib><creatorcontrib>Tratnyek, Paul G</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><title>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer “reductant demand”. To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.</description><subject>Applied sciences</subject><subject>Aquifers</subject><subject>Carboxymethylcellulose Sodium - chemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Groundwater flow</subject><subject>Groundwaters</subject><subject>Hydraulics</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Motion</subject><subject>Nanoparticles - chemistry</subject><subject>Natural water pollution</subject><subject>Oxidation</subject><subject>Oxygen - analysis</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Solubility</subject><subject>Time Factors</subject><subject>Water - chemistry</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkEtLAzEUhYMotlYX_gEZEBcuRpPcZB5LKVYLRRetIm6GPHHKdNImM2D99Y601oKry4GPcy4fQucE3xBMya0JgBlP2OoA9QmnOOYZJ4eojzGBOIfkrYdOQphjjCng7Bj1KAAhQNM-UqPSVDqeKlGZaOZFHZbON5Go9SZZ5xeiKV0dORsNhZfuc70wzce6Uqaq2soFE08bIcuq_DI6ehK1i96Nd_FrV1g30di7-hQdWVEFc7a9A_Qyup8NH-PJ88N4eDeJBaTQxFxnBEuiMeY0zRUTVunE5ACQa8EkVcZKLWQmOVMyYcDBssRapVKb5YwqGKDLTe_Su1VrQlPMXevrbrIgNGNZkkOed9T1hlLeheCNLZa-XAi_LggufnQWO50de7FtbOXC6B35668DrraACJ1C2ylTZfjjUgKcpXucUGHvq3-D3-FeikQ</recordid><startdate>20130205</startdate><enddate>20130205</enddate><creator>Johnson, Richard L</creator><creator>Nurmi, James T</creator><creator>O’Brien Johnson, Graham S</creator><creator>Fan, Dimin</creator><creator>O’Brien Johnson, Reid L</creator><creator>Shi, Zhenqing</creator><creator>Salter-Blanc, Alexandra J</creator><creator>Tratnyek, Paul G</creator><creator>Lowry, Gregory V</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20130205</creationdate><title>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</title><author>Johnson, Richard L ; Nurmi, James T ; O’Brien Johnson, Graham S ; Fan, Dimin ; O’Brien Johnson, Reid L ; Shi, Zhenqing ; Salter-Blanc, Alexandra J ; Tratnyek, Paul G ; Lowry, Gregory V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Aquifers</topic><topic>Carboxymethylcellulose Sodium - chemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Groundwater flow</topic><topic>Groundwaters</topic><topic>Hydraulics</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Motion</topic><topic>Nanoparticles - chemistry</topic><topic>Natural water pollution</topic><topic>Oxidation</topic><topic>Oxygen - analysis</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Solubility</topic><topic>Time Factors</topic><topic>Water - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Richard L</creatorcontrib><creatorcontrib>Nurmi, James T</creatorcontrib><creatorcontrib>O’Brien Johnson, Graham S</creatorcontrib><creatorcontrib>Fan, Dimin</creatorcontrib><creatorcontrib>O’Brien Johnson, Reid L</creatorcontrib><creatorcontrib>Shi, Zhenqing</creatorcontrib><creatorcontrib>Salter-Blanc, Alexandra J</creatorcontrib><creatorcontrib>Tratnyek, Paul G</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Richard L</au><au>Nurmi, James T</au><au>O’Brien Johnson, Graham S</au><au>Fan, Dimin</au><au>O’Brien Johnson, Reid L</au><au>Shi, Zhenqing</au><au>Salter-Blanc, Alexandra J</au><au>Tratnyek, Paul G</au><au>Lowry, Gregory V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-02-05</date><risdate>2013</risdate><volume>47</volume><issue>3</issue><spage>1573</spage><epage>1580</epage><pages>1573-1580</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer “reductant demand”. To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23311327</pmid><doi>10.1021/es304564q</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2013-02, Vol.47 (3), p.1573-1580 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_1284869399 |
source | MEDLINE; American Chemical Society Journals |
subjects | Applied sciences Aquifers Carboxymethylcellulose Sodium - chemistry Earth sciences Earth, ocean, space Electric Conductivity Electrodes Engineering and environment geology. Geothermics Exact sciences and technology Groundwater flow Groundwaters Hydraulics Hydrogen Iron Iron - chemistry Motion Nanoparticles - chemistry Natural water pollution Oxidation Oxygen - analysis Pollution Pollution, environment geology Solubility Time Factors Water - chemistry Water treatment and pollution |
title | Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Scale%20Transport%20and%20Transformation%20of%20Carboxymethylcellulose-Stabilized%20Nano%20Zero-Valent%20Iron&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Johnson,%20Richard%20L&rft.date=2013-02-05&rft.volume=47&rft.issue=3&rft.spage=1573&rft.epage=1580&rft.pages=1573-1580&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es304564q&rft_dat=%3Cproquest_cross%3E2885947491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284869399&rft_id=info:pmid/23311327&rfr_iscdi=true |