Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron

The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aqui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-02, Vol.47 (3), p.1573-1580
Hauptverfasser: Johnson, Richard L, Nurmi, James T, O’Brien Johnson, Graham S, Fan, Dimin, O’Brien Johnson, Reid L, Shi, Zhenqing, Salter-Blanc, Alexandra J, Tratnyek, Paul G, Lowry, Gregory V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1580
container_issue 3
container_start_page 1573
container_title Environmental science & technology
container_volume 47
creator Johnson, Richard L
Nurmi, James T
O’Brien Johnson, Graham S
Fan, Dimin
O’Brien Johnson, Reid L
Shi, Zhenqing
Salter-Blanc, Alexandra J
Tratnyek, Paul G
Lowry, Gregory V
description The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and
doi_str_mv 10.1021/es304564q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1284869399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885947491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMotlYX_gEZEBcuRpPcZB5LKVYLRRetIm6GPHHKdNImM2D99Y601oKry4GPcy4fQucE3xBMya0JgBlP2OoA9QmnOOYZJ4eojzGBOIfkrYdOQphjjCng7Bj1KAAhQNM-UqPSVDqeKlGZaOZFHZbON5Go9SZZ5xeiKV0dORsNhZfuc70wzce6Uqaq2soFE08bIcuq_DI6ehK1i96Nd_FrV1g30di7-hQdWVEFc7a9A_Qyup8NH-PJ88N4eDeJBaTQxFxnBEuiMeY0zRUTVunE5ACQa8EkVcZKLWQmOVMyYcDBssRapVKb5YwqGKDLTe_Su1VrQlPMXevrbrIgNGNZkkOed9T1hlLeheCNLZa-XAi_LggufnQWO50de7FtbOXC6B35668DrraACJ1C2ylTZfjjUgKcpXucUGHvq3-D3-FeikQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284869399</pqid></control><display><type>article</type><title>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Johnson, Richard L ; Nurmi, James T ; O’Brien Johnson, Graham S ; Fan, Dimin ; O’Brien Johnson, Reid L ; Shi, Zhenqing ; Salter-Blanc, Alexandra J ; Tratnyek, Paul G ; Lowry, Gregory V</creator><creatorcontrib>Johnson, Richard L ; Nurmi, James T ; O’Brien Johnson, Graham S ; Fan, Dimin ; O’Brien Johnson, Reid L ; Shi, Zhenqing ; Salter-Blanc, Alexandra J ; Tratnyek, Paul G ; Lowry, Gregory V</creatorcontrib><description>The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and &lt;2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer “reductant demand”. To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es304564q</identifier><identifier>PMID: 23311327</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Aquifers ; Carboxymethylcellulose Sodium - chemistry ; Earth sciences ; Earth, ocean, space ; Electric Conductivity ; Electrodes ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Groundwater flow ; Groundwaters ; Hydraulics ; Hydrogen ; Iron ; Iron - chemistry ; Motion ; Nanoparticles - chemistry ; Natural water pollution ; Oxidation ; Oxygen - analysis ; Pollution ; Pollution, environment geology ; Solubility ; Time Factors ; Water - chemistry ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2013-02, Vol.47 (3), p.1573-1580</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 5, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</citedby><cites>FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es304564q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es304564q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27135477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23311327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Richard L</creatorcontrib><creatorcontrib>Nurmi, James T</creatorcontrib><creatorcontrib>O’Brien Johnson, Graham S</creatorcontrib><creatorcontrib>Fan, Dimin</creatorcontrib><creatorcontrib>O’Brien Johnson, Reid L</creatorcontrib><creatorcontrib>Shi, Zhenqing</creatorcontrib><creatorcontrib>Salter-Blanc, Alexandra J</creatorcontrib><creatorcontrib>Tratnyek, Paul G</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><title>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and &lt;2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer “reductant demand”. To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.</description><subject>Applied sciences</subject><subject>Aquifers</subject><subject>Carboxymethylcellulose Sodium - chemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Groundwater flow</subject><subject>Groundwaters</subject><subject>Hydraulics</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Motion</subject><subject>Nanoparticles - chemistry</subject><subject>Natural water pollution</subject><subject>Oxidation</subject><subject>Oxygen - analysis</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Solubility</subject><subject>Time Factors</subject><subject>Water - chemistry</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkEtLAzEUhYMotlYX_gEZEBcuRpPcZB5LKVYLRRetIm6GPHHKdNImM2D99Y601oKry4GPcy4fQucE3xBMya0JgBlP2OoA9QmnOOYZJ4eojzGBOIfkrYdOQphjjCng7Bj1KAAhQNM-UqPSVDqeKlGZaOZFHZbON5Go9SZZ5xeiKV0dORsNhZfuc70wzce6Uqaq2soFE08bIcuq_DI6ehK1i96Nd_FrV1g30di7-hQdWVEFc7a9A_Qyup8NH-PJ88N4eDeJBaTQxFxnBEuiMeY0zRUTVunE5ACQa8EkVcZKLWQmOVMyYcDBssRapVKb5YwqGKDLTe_Su1VrQlPMXevrbrIgNGNZkkOed9T1hlLeheCNLZa-XAi_LggufnQWO50de7FtbOXC6B35668DrraACJ1C2ylTZfjjUgKcpXucUGHvq3-D3-FeikQ</recordid><startdate>20130205</startdate><enddate>20130205</enddate><creator>Johnson, Richard L</creator><creator>Nurmi, James T</creator><creator>O’Brien Johnson, Graham S</creator><creator>Fan, Dimin</creator><creator>O’Brien Johnson, Reid L</creator><creator>Shi, Zhenqing</creator><creator>Salter-Blanc, Alexandra J</creator><creator>Tratnyek, Paul G</creator><creator>Lowry, Gregory V</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20130205</creationdate><title>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</title><author>Johnson, Richard L ; Nurmi, James T ; O’Brien Johnson, Graham S ; Fan, Dimin ; O’Brien Johnson, Reid L ; Shi, Zhenqing ; Salter-Blanc, Alexandra J ; Tratnyek, Paul G ; Lowry, Gregory V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-5d810b1d005279c4afcd6e93339da4b2cefbdab8b54cb64353f46ffcc7f8942c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Aquifers</topic><topic>Carboxymethylcellulose Sodium - chemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Groundwater flow</topic><topic>Groundwaters</topic><topic>Hydraulics</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Motion</topic><topic>Nanoparticles - chemistry</topic><topic>Natural water pollution</topic><topic>Oxidation</topic><topic>Oxygen - analysis</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Solubility</topic><topic>Time Factors</topic><topic>Water - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Richard L</creatorcontrib><creatorcontrib>Nurmi, James T</creatorcontrib><creatorcontrib>O’Brien Johnson, Graham S</creatorcontrib><creatorcontrib>Fan, Dimin</creatorcontrib><creatorcontrib>O’Brien Johnson, Reid L</creatorcontrib><creatorcontrib>Shi, Zhenqing</creatorcontrib><creatorcontrib>Salter-Blanc, Alexandra J</creatorcontrib><creatorcontrib>Tratnyek, Paul G</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Richard L</au><au>Nurmi, James T</au><au>O’Brien Johnson, Graham S</au><au>Fan, Dimin</au><au>O’Brien Johnson, Reid L</au><au>Shi, Zhenqing</au><au>Salter-Blanc, Alexandra J</au><au>Tratnyek, Paul G</au><au>Lowry, Gregory V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-02-05</date><risdate>2013</risdate><volume>47</volume><issue>3</issue><spage>1573</spage><epage>1580</epage><pages>1573-1580</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and &lt;2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer “reductant demand”. To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23311327</pmid><doi>10.1021/es304564q</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2013-02, Vol.47 (3), p.1573-1580
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_1284869399
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Aquifers
Carboxymethylcellulose Sodium - chemistry
Earth sciences
Earth, ocean, space
Electric Conductivity
Electrodes
Engineering and environment geology. Geothermics
Exact sciences and technology
Groundwater flow
Groundwaters
Hydraulics
Hydrogen
Iron
Iron - chemistry
Motion
Nanoparticles - chemistry
Natural water pollution
Oxidation
Oxygen - analysis
Pollution
Pollution, environment geology
Solubility
Time Factors
Water - chemistry
Water treatment and pollution
title Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Scale%20Transport%20and%20Transformation%20of%20Carboxymethylcellulose-Stabilized%20Nano%20Zero-Valent%20Iron&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Johnson,%20Richard%20L&rft.date=2013-02-05&rft.volume=47&rft.issue=3&rft.spage=1573&rft.epage=1580&rft.pages=1573-1580&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es304564q&rft_dat=%3Cproquest_cross%3E2885947491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284869399&rft_id=info:pmid/23311327&rfr_iscdi=true