Using fuzzy logic and neural networks to classify socially responsible organisations

Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental planning and management 2013-03, Vol.56 (2), p.238-253
Hauptverfasser: Escrig-Olmedo, Elena, Fernández-Izquierdo, M. Ángeles, Ferrero-Ferrero, Idoya, León-Soriano, Raúl, Muñoz-Torres, M. Jesús, Rivera-Lirio, Juana M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 2
container_start_page 238
container_title Journal of environmental planning and management
container_volume 56
creator Escrig-Olmedo, Elena
Fernández-Izquierdo, M. Ángeles
Ferrero-Ferrero, Idoya
León-Soriano, Raúl
Muñoz-Torres, M. Jesús
Rivera-Lirio, Juana M
description Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.
doi_str_mv 10.1080/09640568.2012.663324
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_journals_1284416964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884770871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhhtRcF39B4IBL15mrHQ-unMSWfyCBQ_unEOSToasmWRMdSO9v94srSBeXHKoEJ63oOpJ172ksKcwwltQkoOQ474H2u-lZKznj7oLyiTsQAj1-K_70-4Z4i0ACEblRXdzwJiPJCx3dytJ5RgdMXki2S_VpFbmn6V-RzIX4pJBjGElWFw0Ka2kejyXjNEmT0o9mhzRzLG9PO-eBJPQv_hdL7vDxw83V593118_fbl6f71zXNF5N1DD3OAlMMU5MG-DC5MahDXB2kEwC872IKmfrJXtTNJycMPEgEo2iZFddm-2vudafiweZ32K6HxKJvuyoG5D86EXo-wfgNJRKqEehnKpVM9EQ1__g96WpeY2s6b9yDmVzUyj-Ea5WhCrD_pc48nUVVPQ9wL1H4H6XqDeBLbYuy0Wcyj1ZJqJNOnZrKnUUE12ETX7T4dXW4dgijbH2gKHbw3g0DbYvoBkvwDtEaqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284416964</pqid></control><display><type>article</type><title>Using fuzzy logic and neural networks to classify socially responsible organisations</title><source>PAIS Index</source><source>Taylor &amp; Francis Journals Complete</source><creator>Escrig-Olmedo, Elena ; Fernández-Izquierdo, M. Ángeles ; Ferrero-Ferrero, Idoya ; León-Soriano, Raúl ; Muñoz-Torres, M. Jesús ; Rivera-Lirio, Juana M</creator><creatorcontrib>Escrig-Olmedo, Elena ; Fernández-Izquierdo, M. Ángeles ; Ferrero-Ferrero, Idoya ; León-Soriano, Raúl ; Muñoz-Torres, M. Jesús ; Rivera-Lirio, Juana M</creatorcontrib><description>Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.</description><identifier>ISSN: 1360-0559</identifier><identifier>ISSN: 0964-0568</identifier><identifier>EISSN: 1360-0559</identifier><identifier>DOI: 10.1080/09640568.2012.663324</identifier><identifier>CODEN: JEPMF7</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Classification ; Corporate social responsibility ; Corporate Social Responsibility (CSR) ; Expert systems ; Fuzzy logic ; Innovation ; Markets ; Methodology ; Neural networks ; Organizations ; Performance evaluation ; performance measurement ; Rating ; Ratings ; Social responsibility ; Social responsibility of business ; Stakeholder ; stakeholders ; Studies ; Sustainability ; Sustainability management ; sustainability rating agencies</subject><ispartof>Journal of environmental planning and management, 2013-03, Vol.56 (2), p.238-253</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>Copyright Taylor &amp; Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</citedby><cites>FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09640568.2012.663324$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09640568.2012.663324$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27863,27864,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Escrig-Olmedo, Elena</creatorcontrib><creatorcontrib>Fernández-Izquierdo, M. Ángeles</creatorcontrib><creatorcontrib>Ferrero-Ferrero, Idoya</creatorcontrib><creatorcontrib>León-Soriano, Raúl</creatorcontrib><creatorcontrib>Muñoz-Torres, M. Jesús</creatorcontrib><creatorcontrib>Rivera-Lirio, Juana M</creatorcontrib><title>Using fuzzy logic and neural networks to classify socially responsible organisations</title><title>Journal of environmental planning and management</title><description>Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.</description><subject>Classification</subject><subject>Corporate social responsibility</subject><subject>Corporate Social Responsibility (CSR)</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Innovation</subject><subject>Markets</subject><subject>Methodology</subject><subject>Neural networks</subject><subject>Organizations</subject><subject>Performance evaluation</subject><subject>performance measurement</subject><subject>Rating</subject><subject>Ratings</subject><subject>Social responsibility</subject><subject>Social responsibility of business</subject><subject>Stakeholder</subject><subject>stakeholders</subject><subject>Studies</subject><subject>Sustainability</subject><subject>Sustainability management</subject><subject>sustainability rating agencies</subject><issn>1360-0559</issn><issn>0964-0568</issn><issn>1360-0559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkk2LFDEQhhtRcF39B4IBL15mrHQ-unMSWfyCBQ_unEOSToasmWRMdSO9v94srSBeXHKoEJ63oOpJ172ksKcwwltQkoOQ474H2u-lZKznj7oLyiTsQAj1-K_70-4Z4i0ACEblRXdzwJiPJCx3dytJ5RgdMXki2S_VpFbmn6V-RzIX4pJBjGElWFw0Ka2kejyXjNEmT0o9mhzRzLG9PO-eBJPQv_hdL7vDxw83V593118_fbl6f71zXNF5N1DD3OAlMMU5MG-DC5MahDXB2kEwC872IKmfrJXtTNJycMPEgEo2iZFddm-2vudafiweZ32K6HxKJvuyoG5D86EXo-wfgNJRKqEehnKpVM9EQ1__g96WpeY2s6b9yDmVzUyj-Ea5WhCrD_pc48nUVVPQ9wL1H4H6XqDeBLbYuy0Wcyj1ZJqJNOnZrKnUUE12ETX7T4dXW4dgijbH2gKHbw3g0DbYvoBkvwDtEaqs</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Escrig-Olmedo, Elena</creator><creator>Fernández-Izquierdo, M. Ángeles</creator><creator>Ferrero-Ferrero, Idoya</creator><creator>León-Soriano, Raúl</creator><creator>Muñoz-Torres, M. Jesús</creator><creator>Rivera-Lirio, Juana M</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>7U7</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><scope>7SU</scope></search><sort><creationdate>20130301</creationdate><title>Using fuzzy logic and neural networks to classify socially responsible organisations</title><author>Escrig-Olmedo, Elena ; Fernández-Izquierdo, M. Ángeles ; Ferrero-Ferrero, Idoya ; León-Soriano, Raúl ; Muñoz-Torres, M. Jesús ; Rivera-Lirio, Juana M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Corporate social responsibility</topic><topic>Corporate Social Responsibility (CSR)</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Innovation</topic><topic>Markets</topic><topic>Methodology</topic><topic>Neural networks</topic><topic>Organizations</topic><topic>Performance evaluation</topic><topic>performance measurement</topic><topic>Rating</topic><topic>Ratings</topic><topic>Social responsibility</topic><topic>Social responsibility of business</topic><topic>Stakeholder</topic><topic>stakeholders</topic><topic>Studies</topic><topic>Sustainability</topic><topic>Sustainability management</topic><topic>sustainability rating agencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escrig-Olmedo, Elena</creatorcontrib><creatorcontrib>Fernández-Izquierdo, M. Ángeles</creatorcontrib><creatorcontrib>Ferrero-Ferrero, Idoya</creatorcontrib><creatorcontrib>León-Soriano, Raúl</creatorcontrib><creatorcontrib>Muñoz-Torres, M. Jesús</creatorcontrib><creatorcontrib>Rivera-Lirio, Juana M</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>Toxicology Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of environmental planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escrig-Olmedo, Elena</au><au>Fernández-Izquierdo, M. Ángeles</au><au>Ferrero-Ferrero, Idoya</au><au>León-Soriano, Raúl</au><au>Muñoz-Torres, M. Jesús</au><au>Rivera-Lirio, Juana M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using fuzzy logic and neural networks to classify socially responsible organisations</atitle><jtitle>Journal of environmental planning and management</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>238</spage><epage>253</epage><pages>238-253</pages><issn>1360-0559</issn><issn>0964-0568</issn><eissn>1360-0559</eissn><coden>JEPMF7</coden><abstract>Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09640568.2012.663324</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1360-0559
ispartof Journal of environmental planning and management, 2013-03, Vol.56 (2), p.238-253
issn 1360-0559
0964-0568
1360-0559
language eng
recordid cdi_proquest_journals_1284416964
source PAIS Index; Taylor & Francis Journals Complete
subjects Classification
Corporate social responsibility
Corporate Social Responsibility (CSR)
Expert systems
Fuzzy logic
Innovation
Markets
Methodology
Neural networks
Organizations
Performance evaluation
performance measurement
Rating
Ratings
Social responsibility
Social responsibility of business
Stakeholder
stakeholders
Studies
Sustainability
Sustainability management
sustainability rating agencies
title Using fuzzy logic and neural networks to classify socially responsible organisations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20fuzzy%20logic%20and%20neural%20networks%20to%20classify%20socially%20responsible%20organisations&rft.jtitle=Journal%20of%20environmental%20planning%20and%20management&rft.au=Escrig-Olmedo,%20Elena&rft.date=2013-03-01&rft.volume=56&rft.issue=2&rft.spage=238&rft.epage=253&rft.pages=238-253&rft.issn=1360-0559&rft.eissn=1360-0559&rft.coden=JEPMF7&rft_id=info:doi/10.1080/09640568.2012.663324&rft_dat=%3Cproquest_fao_a%3E2884770871%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284416964&rft_id=info:pmid/&rfr_iscdi=true