Using fuzzy logic and neural networks to classify socially responsible organisations
Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social per...
Gespeichert in:
Veröffentlicht in: | Journal of environmental planning and management 2013-03, Vol.56 (2), p.238-253 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 2 |
container_start_page | 238 |
container_title | Journal of environmental planning and management |
container_volume | 56 |
creator | Escrig-Olmedo, Elena Fernández-Izquierdo, M. Ángeles Ferrero-Ferrero, Idoya León-Soriano, Raúl Muñoz-Torres, M. Jesús Rivera-Lirio, Juana M |
description | Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies. |
doi_str_mv | 10.1080/09640568.2012.663324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_journals_1284416964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884770871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhhtRcF39B4IBL15mrHQ-unMSWfyCBQ_unEOSToasmWRMdSO9v94srSBeXHKoEJ63oOpJ172ksKcwwltQkoOQ474H2u-lZKznj7oLyiTsQAj1-K_70-4Z4i0ACEblRXdzwJiPJCx3dytJ5RgdMXki2S_VpFbmn6V-RzIX4pJBjGElWFw0Ka2kejyXjNEmT0o9mhzRzLG9PO-eBJPQv_hdL7vDxw83V593118_fbl6f71zXNF5N1DD3OAlMMU5MG-DC5MahDXB2kEwC872IKmfrJXtTNJycMPEgEo2iZFddm-2vudafiweZ32K6HxKJvuyoG5D86EXo-wfgNJRKqEehnKpVM9EQ1__g96WpeY2s6b9yDmVzUyj-Ea5WhCrD_pc48nUVVPQ9wL1H4H6XqDeBLbYuy0Wcyj1ZJqJNOnZrKnUUE12ETX7T4dXW4dgijbH2gKHbw3g0DbYvoBkvwDtEaqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284416964</pqid></control><display><type>article</type><title>Using fuzzy logic and neural networks to classify socially responsible organisations</title><source>PAIS Index</source><source>Taylor & Francis Journals Complete</source><creator>Escrig-Olmedo, Elena ; Fernández-Izquierdo, M. Ángeles ; Ferrero-Ferrero, Idoya ; León-Soriano, Raúl ; Muñoz-Torres, M. Jesús ; Rivera-Lirio, Juana M</creator><creatorcontrib>Escrig-Olmedo, Elena ; Fernández-Izquierdo, M. Ángeles ; Ferrero-Ferrero, Idoya ; León-Soriano, Raúl ; Muñoz-Torres, M. Jesús ; Rivera-Lirio, Juana M</creatorcontrib><description>Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.</description><identifier>ISSN: 1360-0559</identifier><identifier>ISSN: 0964-0568</identifier><identifier>EISSN: 1360-0559</identifier><identifier>DOI: 10.1080/09640568.2012.663324</identifier><identifier>CODEN: JEPMF7</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Classification ; Corporate social responsibility ; Corporate Social Responsibility (CSR) ; Expert systems ; Fuzzy logic ; Innovation ; Markets ; Methodology ; Neural networks ; Organizations ; Performance evaluation ; performance measurement ; Rating ; Ratings ; Social responsibility ; Social responsibility of business ; Stakeholder ; stakeholders ; Studies ; Sustainability ; Sustainability management ; sustainability rating agencies</subject><ispartof>Journal of environmental planning and management, 2013-03, Vol.56 (2), p.238-253</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>Copyright Taylor & Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</citedby><cites>FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09640568.2012.663324$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09640568.2012.663324$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27863,27864,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Escrig-Olmedo, Elena</creatorcontrib><creatorcontrib>Fernández-Izquierdo, M. Ángeles</creatorcontrib><creatorcontrib>Ferrero-Ferrero, Idoya</creatorcontrib><creatorcontrib>León-Soriano, Raúl</creatorcontrib><creatorcontrib>Muñoz-Torres, M. Jesús</creatorcontrib><creatorcontrib>Rivera-Lirio, Juana M</creatorcontrib><title>Using fuzzy logic and neural networks to classify socially responsible organisations</title><title>Journal of environmental planning and management</title><description>Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.</description><subject>Classification</subject><subject>Corporate social responsibility</subject><subject>Corporate Social Responsibility (CSR)</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Innovation</subject><subject>Markets</subject><subject>Methodology</subject><subject>Neural networks</subject><subject>Organizations</subject><subject>Performance evaluation</subject><subject>performance measurement</subject><subject>Rating</subject><subject>Ratings</subject><subject>Social responsibility</subject><subject>Social responsibility of business</subject><subject>Stakeholder</subject><subject>stakeholders</subject><subject>Studies</subject><subject>Sustainability</subject><subject>Sustainability management</subject><subject>sustainability rating agencies</subject><issn>1360-0559</issn><issn>0964-0568</issn><issn>1360-0559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkk2LFDEQhhtRcF39B4IBL15mrHQ-unMSWfyCBQ_unEOSToasmWRMdSO9v94srSBeXHKoEJ63oOpJ172ksKcwwltQkoOQ474H2u-lZKznj7oLyiTsQAj1-K_70-4Z4i0ACEblRXdzwJiPJCx3dytJ5RgdMXki2S_VpFbmn6V-RzIX4pJBjGElWFw0Ka2kejyXjNEmT0o9mhzRzLG9PO-eBJPQv_hdL7vDxw83V593118_fbl6f71zXNF5N1DD3OAlMMU5MG-DC5MahDXB2kEwC872IKmfrJXtTNJycMPEgEo2iZFddm-2vudafiweZ32K6HxKJvuyoG5D86EXo-wfgNJRKqEehnKpVM9EQ1__g96WpeY2s6b9yDmVzUyj-Ea5WhCrD_pc48nUVVPQ9wL1H4H6XqDeBLbYuy0Wcyj1ZJqJNOnZrKnUUE12ETX7T4dXW4dgijbH2gKHbw3g0DbYvoBkvwDtEaqs</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Escrig-Olmedo, Elena</creator><creator>Fernández-Izquierdo, M. Ángeles</creator><creator>Ferrero-Ferrero, Idoya</creator><creator>León-Soriano, Raúl</creator><creator>Muñoz-Torres, M. Jesús</creator><creator>Rivera-Lirio, Juana M</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>7U7</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><scope>7SU</scope></search><sort><creationdate>20130301</creationdate><title>Using fuzzy logic and neural networks to classify socially responsible organisations</title><author>Escrig-Olmedo, Elena ; Fernández-Izquierdo, M. Ángeles ; Ferrero-Ferrero, Idoya ; León-Soriano, Raúl ; Muñoz-Torres, M. Jesús ; Rivera-Lirio, Juana M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-71a3c7e60394403ebfcfd975bafbb753b0cb2061edbb6b6bd6b40c7d30163d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Corporate social responsibility</topic><topic>Corporate Social Responsibility (CSR)</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Innovation</topic><topic>Markets</topic><topic>Methodology</topic><topic>Neural networks</topic><topic>Organizations</topic><topic>Performance evaluation</topic><topic>performance measurement</topic><topic>Rating</topic><topic>Ratings</topic><topic>Social responsibility</topic><topic>Social responsibility of business</topic><topic>Stakeholder</topic><topic>stakeholders</topic><topic>Studies</topic><topic>Sustainability</topic><topic>Sustainability management</topic><topic>sustainability rating agencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escrig-Olmedo, Elena</creatorcontrib><creatorcontrib>Fernández-Izquierdo, M. Ángeles</creatorcontrib><creatorcontrib>Ferrero-Ferrero, Idoya</creatorcontrib><creatorcontrib>León-Soriano, Raúl</creatorcontrib><creatorcontrib>Muñoz-Torres, M. Jesús</creatorcontrib><creatorcontrib>Rivera-Lirio, Juana M</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>Toxicology Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of environmental planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escrig-Olmedo, Elena</au><au>Fernández-Izquierdo, M. Ángeles</au><au>Ferrero-Ferrero, Idoya</au><au>León-Soriano, Raúl</au><au>Muñoz-Torres, M. Jesús</au><au>Rivera-Lirio, Juana M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using fuzzy logic and neural networks to classify socially responsible organisations</atitle><jtitle>Journal of environmental planning and management</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>238</spage><epage>253</epage><pages>238-253</pages><issn>1360-0559</issn><issn>0964-0568</issn><eissn>1360-0559</eissn><coden>JEPMF7</coden><abstract>Academics and practitioners have not yet developed an adequate method to evaluate the social performance of organisations that includes a robust and comprehensive approach of sustainability and uses the most relevant data sources. However, sustainability rating agencies are evaluating the social performance of organisations according to their own methodologies, which are not always clearly explained to stakeholders; and the evaluations they provide are being used as a reference in markets. This study contributes to research on the evaluation of social performance in organisations, by means of an innovative methodology that combines the use of neural networks and fuzzy logic for the development of expert systems suitable for classifying organisations according to their performance on Corporate Social Responsibility. The methodology has been validated in a simplified scenario and results indicate that it is suitable for replicating the classifications provided by sustainability rating agencies.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09640568.2012.663324</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-0559 |
ispartof | Journal of environmental planning and management, 2013-03, Vol.56 (2), p.238-253 |
issn | 1360-0559 0964-0568 1360-0559 |
language | eng |
recordid | cdi_proquest_journals_1284416964 |
source | PAIS Index; Taylor & Francis Journals Complete |
subjects | Classification Corporate social responsibility Corporate Social Responsibility (CSR) Expert systems Fuzzy logic Innovation Markets Methodology Neural networks Organizations Performance evaluation performance measurement Rating Ratings Social responsibility Social responsibility of business Stakeholder stakeholders Studies Sustainability Sustainability management sustainability rating agencies |
title | Using fuzzy logic and neural networks to classify socially responsible organisations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20fuzzy%20logic%20and%20neural%20networks%20to%20classify%20socially%20responsible%20organisations&rft.jtitle=Journal%20of%20environmental%20planning%20and%20management&rft.au=Escrig-Olmedo,%20Elena&rft.date=2013-03-01&rft.volume=56&rft.issue=2&rft.spage=238&rft.epage=253&rft.pages=238-253&rft.issn=1360-0559&rft.eissn=1360-0559&rft.coden=JEPMF7&rft_id=info:doi/10.1080/09640568.2012.663324&rft_dat=%3Cproquest_fao_a%3E2884770871%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284416964&rft_id=info:pmid/&rfr_iscdi=true |