L^2$ Optimization in Discrete FIR Estimation: Exploiting State-Space Structure

This paper studies the $L^2$ (mean-square) optimal design of discrete-time FIR estimators. A solution procedure, which reduces the problem to a static matrix optimization problem admitting a closed-form solution, is proposed. In the latter solution, a special state-space structure of the associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2013-01, Vol.51 (1), p.419-441
Hauptverfasser: Levinson, Yaron, Mirkin, Leonid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 1
container_start_page 419
container_title SIAM journal on control and optimization
container_volume 51
creator Levinson, Yaron
Mirkin, Leonid
description This paper studies the $L^2$ (mean-square) optimal design of discrete-time FIR estimators. A solution procedure, which reduces the problem to a static matrix optimization problem admitting a closed-form solution, is proposed. In the latter solution, a special state-space structure of the associated matrices is exploited to obtain efficient formulae with the computational complexity proportional to the length of the impulse response of the estimator. Unlike previously available least-square FIR results, our treatment does not impose unnecessarily restrictive assumptions on the process dynamics and can handle interpolation constraints on the unit circle, which facilitates the inclusion of steady-state performance requirements. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/110845185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1284354128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884458581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-adf76ae3ec5128a8593d9c1690304c63855930924ce20755f1844d7c396777843</originalsourceid><addsrcrecordid>eNo9UMFKxDAUDKJgXT34BwG9eKjmNUmTeJO1qwvFBVevlpCmkmVta5KC-vVGVzzNY2aY4Q1Cp0AuAai4AiCScZB8D2VAFM8FULmPMkJLmhMo1CE6CmFDCDAGLEMP9UtxjldjdG_uS0c39Nj1-NYF4220eLF8xFVI4q90jauPcTu46PpXvI462nw9amPT7ScTJ2-P0UGnt8Ge_OEMPS-qp_l9Xq_ulvObOjcgRcx124lSW2oNh0JqyRVtlYFSEUqYKankiSGqYMYWRHDegWSsFYaqUgghGZ2hs13u6If3yYbYbIbJ96mySYGMcpYguS52LuOHELztmtGnV_xnA6T5mav5n4t-A4joWWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284354128</pqid></control><display><type>article</type><title>L^2$ Optimization in Discrete FIR Estimation: Exploiting State-Space Structure</title><source>SIAM Journals Online</source><creator>Levinson, Yaron ; Mirkin, Leonid</creator><creatorcontrib>Levinson, Yaron ; Mirkin, Leonid</creatorcontrib><description>This paper studies the $L^2$ (mean-square) optimal design of discrete-time FIR estimators. A solution procedure, which reduces the problem to a static matrix optimization problem admitting a closed-form solution, is proposed. In the latter solution, a special state-space structure of the associated matrices is exploited to obtain efficient formulae with the computational complexity proportional to the length of the impulse response of the estimator. Unlike previously available least-square FIR results, our treatment does not impose unnecessarily restrictive assumptions on the process dynamics and can handle interpolation constraints on the unit circle, which facilitates the inclusion of steady-state performance requirements. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/110845185</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Design optimization ; Noise</subject><ispartof>SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.419-441</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-adf76ae3ec5128a8593d9c1690304c63855930924ce20755f1844d7c396777843</citedby><cites>FETCH-LOGICAL-c187t-adf76ae3ec5128a8593d9c1690304c63855930924ce20755f1844d7c396777843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Levinson, Yaron</creatorcontrib><creatorcontrib>Mirkin, Leonid</creatorcontrib><title>L^2$ Optimization in Discrete FIR Estimation: Exploiting State-Space Structure</title><title>SIAM journal on control and optimization</title><description>This paper studies the $L^2$ (mean-square) optimal design of discrete-time FIR estimators. A solution procedure, which reduces the problem to a static matrix optimization problem admitting a closed-form solution, is proposed. In the latter solution, a special state-space structure of the associated matrices is exploited to obtain efficient formulae with the computational complexity proportional to the length of the impulse response of the estimator. Unlike previously available least-square FIR results, our treatment does not impose unnecessarily restrictive assumptions on the process dynamics and can handle interpolation constraints on the unit circle, which facilitates the inclusion of steady-state performance requirements. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Design optimization</subject><subject>Noise</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UMFKxDAUDKJgXT34BwG9eKjmNUmTeJO1qwvFBVevlpCmkmVta5KC-vVGVzzNY2aY4Q1Cp0AuAai4AiCScZB8D2VAFM8FULmPMkJLmhMo1CE6CmFDCDAGLEMP9UtxjldjdG_uS0c39Nj1-NYF4220eLF8xFVI4q90jauPcTu46PpXvI462nw9amPT7ScTJ2-P0UGnt8Ge_OEMPS-qp_l9Xq_ulvObOjcgRcx124lSW2oNh0JqyRVtlYFSEUqYKankiSGqYMYWRHDegWSsFYaqUgghGZ2hs13u6If3yYbYbIbJ96mySYGMcpYguS52LuOHELztmtGnV_xnA6T5mav5n4t-A4joWWw</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Levinson, Yaron</creator><creator>Mirkin, Leonid</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201301</creationdate><title>L^2$ Optimization in Discrete FIR Estimation: Exploiting State-Space Structure</title><author>Levinson, Yaron ; Mirkin, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-adf76ae3ec5128a8593d9c1690304c63855930924ce20755f1844d7c396777843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Design optimization</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levinson, Yaron</creatorcontrib><creatorcontrib>Mirkin, Leonid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levinson, Yaron</au><au>Mirkin, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L^2$ Optimization in Discrete FIR Estimation: Exploiting State-Space Structure</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2013-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>419</spage><epage>441</epage><pages>419-441</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>This paper studies the $L^2$ (mean-square) optimal design of discrete-time FIR estimators. A solution procedure, which reduces the problem to a static matrix optimization problem admitting a closed-form solution, is proposed. In the latter solution, a special state-space structure of the associated matrices is exploited to obtain efficient formulae with the computational complexity proportional to the length of the impulse response of the estimator. Unlike previously available least-square FIR results, our treatment does not impose unnecessarily restrictive assumptions on the process dynamics and can handle interpolation constraints on the unit circle, which facilitates the inclusion of steady-state performance requirements. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110845185</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.419-441
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_1284354128
source SIAM Journals Online
subjects Algorithms
Design optimization
Noise
title L^2$ Optimization in Discrete FIR Estimation: Exploiting State-Space Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%5E2$%20Optimization%20in%20Discrete%20FIR%20Estimation:%20Exploiting%20State-Space%20Structure&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Levinson,%20Yaron&rft.date=2013-01&rft.volume=51&rft.issue=1&rft.spage=419&rft.epage=441&rft.pages=419-441&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/110845185&rft_dat=%3Cproquest_cross%3E2884458581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284354128&rft_id=info:pmid/&rfr_iscdi=true