Search for Superconductivity in Doped Amorphous Carbon Thin Films

In this paper, we have searched for superconductivity by measuring ohmic resistivity as a function of temperature in amorphous carbon films deposited by pulsed laser deposition and doped by ion implantation with sulfur and phosphorus ions. The doping concentrations were varied from 0.0003 to 4 Vol%...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.7000205-7000205
Hauptverfasser: Pierce, Benjamin T., Burke, Jack L., Brunke, Lyle B., Bullard, Thomas J., Vier, David C., Haugan, Timothy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7000205
container_issue 3
container_start_page 7000205
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Pierce, Benjamin T.
Burke, Jack L.
Brunke, Lyle B.
Bullard, Thomas J.
Vier, David C.
Haugan, Timothy J.
description In this paper, we have searched for superconductivity by measuring ohmic resistivity as a function of temperature in amorphous carbon films deposited by pulsed laser deposition and doped by ion implantation with sulfur and phosphorus ions. The doping concentrations were varied from 0.0003 to 4 Vol% for sulfur and 0.0003 to 1 Vol% for phosphorus. Previous efforts have studied doping of carbon-family materials such as highly oriented pyrolytic graphite, diamond-like carbon, and graphite/graphene, which have yielded critical temperatures lower than 20 K. In this study, amorphous carbon films doped with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} phosphorus concentration showed a distinct change from semiconducting to metallic behavior and a dramatic 10 000-fold decrease in resistivity below 100 K as compared to undoped films. Sulfur-doped films with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} concentration showed up to a 100-fold decrease in resistivity below 100 K as compared to undoped samples. While evidence of superconductivity was not observed, significant improvements in conductivity were noted below 100 K.
doi_str_mv 10.1109/TASC.2013.2238572
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1284269891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6407827</ieee_id><sourcerecordid>1349438709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-d16d87b30e687cd6a23f1658c12ba8ec2799ca1edce74c181ba5d71f9273c8b93</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYsoOKc_QHwpiOBLZ27SNMljmU6FgQ-bzyFNU9bRNjVphf17Uzb24NO9cL5zuPdE0T2gBQASL9t8s1xgBGSBMeGU4YtoBpTyBFOgl2FHFBIetOvoxvs9QpDylM6ifGOU07u4si7ejL1x2nblqIf6tx4Ocd3Fr7Y3ZZy31vU7O_p4qVxhu3i7C9qqblp_G11VqvHm7jTn0ffqbbv8SNZf75_LfJ1oIsSQlJCVnBUEmYwzXWYKkwoyyjXgQnGjMRNCKzClNizVwKFQtGRQCcyI5oUg8-j5mNs7-zMaP8i29to0jepMOEwCSUVKOEMT-vgP3dvRdeE6CZinOBNcQKDgSGlnvXemkr2rW-UOEpCcSpVTqXIqVZ5KDZ6nU7LyWjWVU52u_dmIGcWCpShwD0euNsac5SxFjId__gBuTX6X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284269891</pqid></control><display><type>article</type><title>Search for Superconductivity in Doped Amorphous Carbon Thin Films</title><source>IEEE Electronic Library (IEL)</source><creator>Pierce, Benjamin T. ; Burke, Jack L. ; Brunke, Lyle B. ; Bullard, Thomas J. ; Vier, David C. ; Haugan, Timothy J.</creator><creatorcontrib>Pierce, Benjamin T. ; Burke, Jack L. ; Brunke, Lyle B. ; Bullard, Thomas J. ; Vier, David C. ; Haugan, Timothy J.</creatorcontrib><description>In this paper, we have searched for superconductivity by measuring ohmic resistivity as a function of temperature in amorphous carbon films deposited by pulsed laser deposition and doped by ion implantation with sulfur and phosphorus ions. The doping concentrations were varied from 0.0003 to 4 Vol% for sulfur and 0.0003 to 1 Vol% for phosphorus. Previous efforts have studied doping of carbon-family materials such as highly oriented pyrolytic graphite, diamond-like carbon, and graphite/graphene, which have yielded critical temperatures lower than 20 K. In this study, amorphous carbon films doped with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} phosphorus concentration showed a distinct change from semiconducting to metallic behavior and a dramatic 10 000-fold decrease in resistivity below 100 K as compared to undoped films. Sulfur-doped films with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} concentration showed up to a 100-fold decrease in resistivity below 100 K as compared to undoped samples. While evidence of superconductivity was not observed, significant improvements in conductivity were noted below 100 K.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2013.2238572</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amorphous ; Annealing ; Applied sciences ; Carbon ; Conductivity ; Doping ; Electrical resistivity ; Electronics ; Exact sciences and technology ; Graphene ; Graphite ; ion implantation ; Microelectronic fabrication (materials and surfaces technology) ; Phosphorus ; Searching ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sulfur ; superconducting materials ; Superconductivity ; Thin films</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.7000205-7000205</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-d16d87b30e687cd6a23f1658c12ba8ec2799ca1edce74c181ba5d71f9273c8b93</citedby><cites>FETCH-LOGICAL-c399t-d16d87b30e687cd6a23f1658c12ba8ec2799ca1edce74c181ba5d71f9273c8b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6407827$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6407827$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27529740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierce, Benjamin T.</creatorcontrib><creatorcontrib>Burke, Jack L.</creatorcontrib><creatorcontrib>Brunke, Lyle B.</creatorcontrib><creatorcontrib>Bullard, Thomas J.</creatorcontrib><creatorcontrib>Vier, David C.</creatorcontrib><creatorcontrib>Haugan, Timothy J.</creatorcontrib><title>Search for Superconductivity in Doped Amorphous Carbon Thin Films</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In this paper, we have searched for superconductivity by measuring ohmic resistivity as a function of temperature in amorphous carbon films deposited by pulsed laser deposition and doped by ion implantation with sulfur and phosphorus ions. The doping concentrations were varied from 0.0003 to 4 Vol% for sulfur and 0.0003 to 1 Vol% for phosphorus. Previous efforts have studied doping of carbon-family materials such as highly oriented pyrolytic graphite, diamond-like carbon, and graphite/graphene, which have yielded critical temperatures lower than 20 K. In this study, amorphous carbon films doped with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} phosphorus concentration showed a distinct change from semiconducting to metallic behavior and a dramatic 10 000-fold decrease in resistivity below 100 K as compared to undoped films. Sulfur-doped films with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} concentration showed up to a 100-fold decrease in resistivity below 100 K as compared to undoped samples. While evidence of superconductivity was not observed, significant improvements in conductivity were noted below 100 K.</description><subject>Amorphous</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Carbon</subject><subject>Conductivity</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Graphite</subject><subject>ion implantation</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Phosphorus</subject><subject>Searching</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sulfur</subject><subject>superconducting materials</subject><subject>Superconductivity</subject><subject>Thin films</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFLwzAUhYsoOKc_QHwpiOBLZ27SNMljmU6FgQ-bzyFNU9bRNjVphf17Uzb24NO9cL5zuPdE0T2gBQASL9t8s1xgBGSBMeGU4YtoBpTyBFOgl2FHFBIetOvoxvs9QpDylM6ifGOU07u4si7ejL1x2nblqIf6tx4Ocd3Fr7Y3ZZy31vU7O_p4qVxhu3i7C9qqblp_G11VqvHm7jTn0ffqbbv8SNZf75_LfJ1oIsSQlJCVnBUEmYwzXWYKkwoyyjXgQnGjMRNCKzClNizVwKFQtGRQCcyI5oUg8-j5mNs7-zMaP8i29to0jepMOEwCSUVKOEMT-vgP3dvRdeE6CZinOBNcQKDgSGlnvXemkr2rW-UOEpCcSpVTqXIqVZ5KDZ6nU7LyWjWVU52u_dmIGcWCpShwD0euNsac5SxFjId__gBuTX6X</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pierce, Benjamin T.</creator><creator>Burke, Jack L.</creator><creator>Brunke, Lyle B.</creator><creator>Bullard, Thomas J.</creator><creator>Vier, David C.</creator><creator>Haugan, Timothy J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Search for Superconductivity in Doped Amorphous Carbon Thin Films</title><author>Pierce, Benjamin T. ; Burke, Jack L. ; Brunke, Lyle B. ; Bullard, Thomas J. ; Vier, David C. ; Haugan, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-d16d87b30e687cd6a23f1658c12ba8ec2799ca1edce74c181ba5d71f9273c8b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Carbon</topic><topic>Conductivity</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Graphite</topic><topic>ion implantation</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Phosphorus</topic><topic>Searching</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sulfur</topic><topic>superconducting materials</topic><topic>Superconductivity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, Benjamin T.</creatorcontrib><creatorcontrib>Burke, Jack L.</creatorcontrib><creatorcontrib>Brunke, Lyle B.</creatorcontrib><creatorcontrib>Bullard, Thomas J.</creatorcontrib><creatorcontrib>Vier, David C.</creatorcontrib><creatorcontrib>Haugan, Timothy J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pierce, Benjamin T.</au><au>Burke, Jack L.</au><au>Brunke, Lyle B.</au><au>Bullard, Thomas J.</au><au>Vier, David C.</au><au>Haugan, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Search for Superconductivity in Doped Amorphous Carbon Thin Films</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>7000205</spage><epage>7000205</epage><pages>7000205-7000205</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In this paper, we have searched for superconductivity by measuring ohmic resistivity as a function of temperature in amorphous carbon films deposited by pulsed laser deposition and doped by ion implantation with sulfur and phosphorus ions. The doping concentrations were varied from 0.0003 to 4 Vol% for sulfur and 0.0003 to 1 Vol% for phosphorus. Previous efforts have studied doping of carbon-family materials such as highly oriented pyrolytic graphite, diamond-like carbon, and graphite/graphene, which have yielded critical temperatures lower than 20 K. In this study, amorphous carbon films doped with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} phosphorus concentration showed a distinct change from semiconducting to metallic behavior and a dramatic 10 000-fold decrease in resistivity below 100 K as compared to undoped films. Sulfur-doped films with 2.55 \times 10^{12}\ \hbox{ions/cm}^{2} concentration showed up to a 100-fold decrease in resistivity below 100 K as compared to undoped samples. While evidence of superconductivity was not observed, significant improvements in conductivity were noted below 100 K.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2013.2238572</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.7000205-7000205
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_1284269891
source IEEE Electronic Library (IEL)
subjects Amorphous
Annealing
Applied sciences
Carbon
Conductivity
Doping
Electrical resistivity
Electronics
Exact sciences and technology
Graphene
Graphite
ion implantation
Microelectronic fabrication (materials and surfaces technology)
Phosphorus
Searching
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sulfur
superconducting materials
Superconductivity
Thin films
title Search for Superconductivity in Doped Amorphous Carbon Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Search%20for%20Superconductivity%20in%20Doped%20Amorphous%20Carbon%20Thin%20Films&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pierce,%20Benjamin%20T.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=7000205&rft.epage=7000205&rft.pages=7000205-7000205&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2013.2238572&rft_dat=%3Cproquest_RIE%3E1349438709%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284269891&rft_id=info:pmid/&rft_ieee_id=6407827&rfr_iscdi=true