Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)

[Display omitted] ► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2013-02, Vol.298, p.122-129
1. Verfasser: Benco, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 122
container_title Journal of catalysis
container_volume 298
creator Benco, L.
description [Display omitted] ► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear. The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+>Fe2+>Co2+>RuO2+.
doi_str_mv 10.1016/j.jcat.2012.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1283301890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951712003533</els_id><sourcerecordid>2880134601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</originalsourceid><addsrcrecordid>eNp9kN9r1EAQx4MoeFb_AV9cEEGpSWcmm19QH47otULbA22f173NrCa02XM3d9D_3j1y-NiXGRg-853hkyRvETIELM-GbDB6ygiQMsQMgJ4lC4QGUiob-TxZxAmmTYHVy-RVCAMAYlHUi-RX6x62PAY99W4UbC2bKRNL8XV1K8K06x6Fs2L6w0Kbqd_PVJzc0Fq4PXtxnbaXS_Hx-suK6fSzaN2h_titj-300-vkhdX3gd8c-0lyt_p2216mV-uL7-3yKjV5TVNa1ywrYLMxksgQdGBKWTPVmxpLqqgqN9YUxMCy6whz6sqmApsXki0WssxPkvdz7ta7vzsOkxrczo_xpEKq8xywbiBSNFPGuxA8W7X1_YP2jwpBHUyqQR1MqoNJhaiit7j04Ritg9H31uvR9OH_ZjRMUlIVuXczZ7VT-rePzN3PGFRC1A2xRuJ8Jjia2PfsVTA9j4a73kfxqnP9U4_8A2O3i-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283301890</pqid></control><display><type>article</type><title>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</title><source>Elsevier ScienceDirect Journals</source><creator>Benco, L.</creator><creatorcontrib>Benco, L.</creatorcontrib><description>[Display omitted] ► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear. The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+&gt;Fe2+&gt;Co2+&gt;RuO2+.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2012.11.002</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Ab initio MD simulation ; activation energy ; Activation of N2O ; active sites ; Anticompensation ; Arrhenius plot ; calculation ; Catalysis ; Catalysts ; cations ; Chemistry ; cobalt ; compensation ; Compensation effect ; DFT ; enthalpy ; Entropy ; Exact sciences and technology ; Free-energy change ; General and physical chemistry ; Ion-exchange ; iron ; nitrous oxide ; Reaction kinetics ; simulation ; Surface physical chemistry ; temperature ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Zeolites: preparations and properties</subject><ispartof>Journal of catalysis, 2013-02, Vol.298, p.122-129</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</citedby><cites>FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021951712003533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26924427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benco, L.</creatorcontrib><title>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</title><title>Journal of catalysis</title><description>[Display omitted] ► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear. The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+&gt;Fe2+&gt;Co2+&gt;RuO2+.</description><subject>Ab initio MD simulation</subject><subject>activation energy</subject><subject>Activation of N2O</subject><subject>active sites</subject><subject>Anticompensation</subject><subject>Arrhenius plot</subject><subject>calculation</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>cations</subject><subject>Chemistry</subject><subject>cobalt</subject><subject>compensation</subject><subject>Compensation effect</subject><subject>DFT</subject><subject>enthalpy</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Free-energy change</subject><subject>General and physical chemistry</subject><subject>Ion-exchange</subject><subject>iron</subject><subject>nitrous oxide</subject><subject>Reaction kinetics</subject><subject>simulation</subject><subject>Surface physical chemistry</subject><subject>temperature</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Zeolites: preparations and properties</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kN9r1EAQx4MoeFb_AV9cEEGpSWcmm19QH47otULbA22f173NrCa02XM3d9D_3j1y-NiXGRg-853hkyRvETIELM-GbDB6ygiQMsQMgJ4lC4QGUiob-TxZxAmmTYHVy-RVCAMAYlHUi-RX6x62PAY99W4UbC2bKRNL8XV1K8K06x6Fs2L6w0Kbqd_PVJzc0Fq4PXtxnbaXS_Hx-suK6fSzaN2h_titj-300-vkhdX3gd8c-0lyt_p2216mV-uL7-3yKjV5TVNa1ywrYLMxksgQdGBKWTPVmxpLqqgqN9YUxMCy6whz6sqmApsXki0WssxPkvdz7ta7vzsOkxrczo_xpEKq8xywbiBSNFPGuxA8W7X1_YP2jwpBHUyqQR1MqoNJhaiit7j04Ritg9H31uvR9OH_ZjRMUlIVuXczZ7VT-rePzN3PGFRC1A2xRuJ8Jjia2PfsVTA9j4a73kfxqnP9U4_8A2O3i-g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Benco, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</title><author>Benco, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ab initio MD simulation</topic><topic>activation energy</topic><topic>Activation of N2O</topic><topic>active sites</topic><topic>Anticompensation</topic><topic>Arrhenius plot</topic><topic>calculation</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>cations</topic><topic>Chemistry</topic><topic>cobalt</topic><topic>compensation</topic><topic>Compensation effect</topic><topic>DFT</topic><topic>enthalpy</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Free-energy change</topic><topic>General and physical chemistry</topic><topic>Ion-exchange</topic><topic>iron</topic><topic>nitrous oxide</topic><topic>Reaction kinetics</topic><topic>simulation</topic><topic>Surface physical chemistry</topic><topic>temperature</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benco, L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benco, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</atitle><jtitle>Journal of catalysis</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>298</volume><spage>122</spage><epage>129</epage><pages>122-129</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>[Display omitted] ► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear. The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+&gt;Fe2+&gt;Co2+&gt;RuO2+.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2012.11.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2013-02, Vol.298, p.122-129
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_1283301890
source Elsevier ScienceDirect Journals
subjects Ab initio MD simulation
activation energy
Activation of N2O
active sites
Anticompensation
Arrhenius plot
calculation
Catalysis
Catalysts
cations
Chemistry
cobalt
compensation
Compensation effect
DFT
enthalpy
Entropy
Exact sciences and technology
Free-energy change
General and physical chemistry
Ion-exchange
iron
nitrous oxide
Reaction kinetics
simulation
Surface physical chemistry
temperature
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Zeolites: preparations and properties
title Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensation%20effect.%20A%20DFT%20study%20of%20the%20activation%20of%20N2O%20over%20M-CHA%20(M=Fe2+,%20Co2+,%20RuO2+,%20RuO+)&rft.jtitle=Journal%20of%20catalysis&rft.au=Benco,%20L.&rft.date=2013-02-01&rft.volume=298&rft.spage=122&rft.epage=129&rft.pages=122-129&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2012.11.002&rft_dat=%3Cproquest_cross%3E2880134601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283301890&rft_id=info:pmid/&rft_els_id=S0021951712003533&rfr_iscdi=true