Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)
[Display omitted] ► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the...
Gespeichert in:
Veröffentlicht in: | Journal of catalysis 2013-02, Vol.298, p.122-129 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | |
container_start_page | 122 |
container_title | Journal of catalysis |
container_volume | 298 |
creator | Benco, L. |
description | [Display omitted]
► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear.
The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+>Fe2+>Co2+>RuO2+. |
doi_str_mv | 10.1016/j.jcat.2012.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1283301890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951712003533</els_id><sourcerecordid>2880134601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</originalsourceid><addsrcrecordid>eNp9kN9r1EAQx4MoeFb_AV9cEEGpSWcmm19QH47otULbA22f173NrCa02XM3d9D_3j1y-NiXGRg-853hkyRvETIELM-GbDB6ygiQMsQMgJ4lC4QGUiob-TxZxAmmTYHVy-RVCAMAYlHUi-RX6x62PAY99W4UbC2bKRNL8XV1K8K06x6Fs2L6w0Kbqd_PVJzc0Fq4PXtxnbaXS_Hx-suK6fSzaN2h_titj-300-vkhdX3gd8c-0lyt_p2216mV-uL7-3yKjV5TVNa1ywrYLMxksgQdGBKWTPVmxpLqqgqN9YUxMCy6whz6sqmApsXki0WssxPkvdz7ta7vzsOkxrczo_xpEKq8xywbiBSNFPGuxA8W7X1_YP2jwpBHUyqQR1MqoNJhaiit7j04Ritg9H31uvR9OH_ZjRMUlIVuXczZ7VT-rePzN3PGFRC1A2xRuJ8Jjia2PfsVTA9j4a73kfxqnP9U4_8A2O3i-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283301890</pqid></control><display><type>article</type><title>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</title><source>Elsevier ScienceDirect Journals</source><creator>Benco, L.</creator><creatorcontrib>Benco, L.</creatorcontrib><description>[Display omitted]
► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear.
The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+>Fe2+>Co2+>RuO2+.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2012.11.002</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Ab initio MD simulation ; activation energy ; Activation of N2O ; active sites ; Anticompensation ; Arrhenius plot ; calculation ; Catalysis ; Catalysts ; cations ; Chemistry ; cobalt ; compensation ; Compensation effect ; DFT ; enthalpy ; Entropy ; Exact sciences and technology ; Free-energy change ; General and physical chemistry ; Ion-exchange ; iron ; nitrous oxide ; Reaction kinetics ; simulation ; Surface physical chemistry ; temperature ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Zeolites: preparations and properties</subject><ispartof>Journal of catalysis, 2013-02, Vol.298, p.122-129</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</citedby><cites>FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021951712003533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26924427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benco, L.</creatorcontrib><title>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</title><title>Journal of catalysis</title><description>[Display omitted]
► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear.
The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+>Fe2+>Co2+>RuO2+.</description><subject>Ab initio MD simulation</subject><subject>activation energy</subject><subject>Activation of N2O</subject><subject>active sites</subject><subject>Anticompensation</subject><subject>Arrhenius plot</subject><subject>calculation</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>cations</subject><subject>Chemistry</subject><subject>cobalt</subject><subject>compensation</subject><subject>Compensation effect</subject><subject>DFT</subject><subject>enthalpy</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Free-energy change</subject><subject>General and physical chemistry</subject><subject>Ion-exchange</subject><subject>iron</subject><subject>nitrous oxide</subject><subject>Reaction kinetics</subject><subject>simulation</subject><subject>Surface physical chemistry</subject><subject>temperature</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Zeolites: preparations and properties</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kN9r1EAQx4MoeFb_AV9cEEGpSWcmm19QH47otULbA22f173NrCa02XM3d9D_3j1y-NiXGRg-853hkyRvETIELM-GbDB6ygiQMsQMgJ4lC4QGUiob-TxZxAmmTYHVy-RVCAMAYlHUi-RX6x62PAY99W4UbC2bKRNL8XV1K8K06x6Fs2L6w0Kbqd_PVJzc0Fq4PXtxnbaXS_Hx-suK6fSzaN2h_titj-300-vkhdX3gd8c-0lyt_p2216mV-uL7-3yKjV5TVNa1ywrYLMxksgQdGBKWTPVmxpLqqgqN9YUxMCy6whz6sqmApsXki0WssxPkvdz7ta7vzsOkxrczo_xpEKq8xywbiBSNFPGuxA8W7X1_YP2jwpBHUyqQR1MqoNJhaiit7j04Ritg9H31uvR9OH_ZjRMUlIVuXczZ7VT-rePzN3PGFRC1A2xRuJ8Jjia2PfsVTA9j4a73kfxqnP9U4_8A2O3i-g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Benco, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</title><author>Benco, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-88e470ecbc422c20d0c648e28b81627276bfc52e0e4dd2132d6970f354ef15463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ab initio MD simulation</topic><topic>activation energy</topic><topic>Activation of N2O</topic><topic>active sites</topic><topic>Anticompensation</topic><topic>Arrhenius plot</topic><topic>calculation</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>cations</topic><topic>Chemistry</topic><topic>cobalt</topic><topic>compensation</topic><topic>Compensation effect</topic><topic>DFT</topic><topic>enthalpy</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Free-energy change</topic><topic>General and physical chemistry</topic><topic>Ion-exchange</topic><topic>iron</topic><topic>nitrous oxide</topic><topic>Reaction kinetics</topic><topic>simulation</topic><topic>Surface physical chemistry</topic><topic>temperature</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benco, L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benco, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+)</atitle><jtitle>Journal of catalysis</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>298</volume><spage>122</spage><epage>129</epage><pages>122-129</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>[Display omitted]
► Ab initio MD simulation of N2O activation over Fe2+, Co2+, Ruo2+, Ruo+ in zeolite using DFT. ► Path-integrated free energies are used to calculate reaction rates. ► Arrhenius plot is constructed from first principles. ► Compensation effect and enthalpy–entropy dependence show the effect of anticompensation. ► Electronic reasons behind the anticompensation remain unclear.
The compensation effect is investigated using DFT calculations of the activation of the N2O molecule over mononuclear cations (Fe2+, Co2+) and cationic oxo-particles (RuO2+, RuO+), identified as perspective active sites. Constrained MD simulations are used to calculate Helmholtz free energies of activation at 300K, 420K, and 700K. Reaction rates calculated according to the transition state theory are used to construct Arrhenius plots (AP). Activation energies, derived from the AP, are 60.9kJ/mol, 77.2kJ/mol, 99.4kJ/mol, and 105.1kJ/mol for RuO+, Fe2+, Co2+, and RuO2+, respectively. A linear dependence between enthalpy of activation ΔH‡ and entropy of activation ΔS‡ is observed only when the reaction exhibits the isokinetic behavior. The change of entropy of activation is approximately three orders smaller than the change of enthalpy. For the activation of N2O, a rare case of the anticompensation is observed. The reaction rates computed for the temperature range between 300K and 700K increase in order: RuO+>Fe2+>Co2+>RuO2+.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2012.11.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 2013-02, Vol.298, p.122-129 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_proquest_journals_1283301890 |
source | Elsevier ScienceDirect Journals |
subjects | Ab initio MD simulation activation energy Activation of N2O active sites Anticompensation Arrhenius plot calculation Catalysis Catalysts cations Chemistry cobalt compensation Compensation effect DFT enthalpy Entropy Exact sciences and technology Free-energy change General and physical chemistry Ion-exchange iron nitrous oxide Reaction kinetics simulation Surface physical chemistry temperature Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Zeolites: preparations and properties |
title | Compensation effect. A DFT study of the activation of N2O over M-CHA (M=Fe2+, Co2+, RuO2+, RuO+) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensation%20effect.%20A%20DFT%20study%20of%20the%20activation%20of%20N2O%20over%20M-CHA%20(M=Fe2+,%20Co2+,%20RuO2+,%20RuO+)&rft.jtitle=Journal%20of%20catalysis&rft.au=Benco,%20L.&rft.date=2013-02-01&rft.volume=298&rft.spage=122&rft.epage=129&rft.pages=122-129&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2012.11.002&rft_dat=%3Cproquest_cross%3E2880134601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283301890&rft_id=info:pmid/&rft_els_id=S0021951712003533&rfr_iscdi=true |