A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes With Error Bounds

Accurate and near real-time estimates of electromechanical modes are of great importance since the modal damping is a key indicator of the stability of the power system. If the estimates of the electromechanical modes are to be useful, knowing the variability in the estimates is critically important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2013-02, Vol.28 (1), p.441-451
Hauptverfasser: Dosiek, L., Pierre, J. W., Follum, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 1
container_start_page 441
container_title IEEE transactions on power systems
container_volume 28
creator Dosiek, L.
Pierre, J. W.
Follum, J.
description Accurate and near real-time estimates of electromechanical modes are of great importance since the modal damping is a key indicator of the stability of the power system. If the estimates of the electromechanical modes are to be useful, knowing the variability in the estimates is critically important. This paper presents a method of directly estimating the variance of each mode estimate in addition to estimating the frequency and damping of each mode in an online setting using a recursive maximum likelihood (RML) estimator. The variance estimates are achieved using two closed-form multidimensional Taylor series approximations, the details of which are fully derived here. The proposed method is validated using a Monte Carlo simulation with a low order model of the Western Electricity Coordinating Council (WECC) power system under both ambient and probing conditions, with multiple modes closely spaced in frequency, and is compared to the regularized robust recursive least squares (R3LS) method. It is also successfully applied to phasor measurement unit (PMU) data collected from the actual WECC system, also under both ambient and probing conditions.
doi_str_mv 10.1109/TPWRS.2012.2203323
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1272058978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6246656</ieee_id><sourcerecordid>1315681866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c1213bd47e7461c10e3a1de92ba322ccbf04cb3cdacff9bc5c6845d9600eab923</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EEuXxA7CxxIZNih-x4yxLVR5SKxAUsbQcZ6IakrjYCYK_J6XAgsVoFnPuaDQHoRNKxpSS_GJ5__zwOGaEsjFjhHPGd9CICqESIrN8F42IUiJRuSD76CDGF0KIHAYj5Cf4AWwfonsHvDAfrukbPHevULuV9yWexc41pvMBV0N1K8B3be1a-B0432Jf4VkNtgu-AbsyrbOmxgtfQsTPrlvhWQhD9tL3bRmP0F5l6gjHP_0QPV3NltObZH53fTudzBPLmeoSSxnlRZlmkKWSWkqAG1pCzgrDGbO2qEhqC25LY6sqL6ywUqWizCUhYIqc8UN0vt27Dv6th9jpxkULdW1a8H3UlFMhFVVSDujZP_TF96EdrtOUZYwIlWdqoNiWssHHGKDS6zA8IHxqSvTGgf52oDcO9I-DIXS6DTkA-AtIlkopJP8CJ-aEXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272058978</pqid></control><display><type>article</type><title>A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes With Error Bounds</title><source>IEEE Electronic Library (IEL)</source><creator>Dosiek, L. ; Pierre, J. W. ; Follum, J.</creator><creatorcontrib>Dosiek, L. ; Pierre, J. W. ; Follum, J.</creatorcontrib><description>Accurate and near real-time estimates of electromechanical modes are of great importance since the modal damping is a key indicator of the stability of the power system. If the estimates of the electromechanical modes are to be useful, knowing the variability in the estimates is critically important. This paper presents a method of directly estimating the variance of each mode estimate in addition to estimating the frequency and damping of each mode in an online setting using a recursive maximum likelihood (RML) estimator. The variance estimates are achieved using two closed-form multidimensional Taylor series approximations, the details of which are fully derived here. The proposed method is validated using a Monte Carlo simulation with a low order model of the Western Electricity Coordinating Council (WECC) power system under both ambient and probing conditions, with multiple modes closely spaced in frequency, and is compared to the regularized robust recursive least squares (R3LS) method. It is also successfully applied to phasor measurement unit (PMU) data collected from the actual WECC system, also under both ambient and probing conditions.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2012.2203323</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Damping ; Electric power generation ; Electromechanical modes ; error bounds ; Estimates ; Estimating ; Frequency estimation ; Load modeling ; Mathematical model ; Maximum likelihood estimation ; Monte Carlo methods ; Monte Carlo simulation ; On-line systems ; power system monitoring ; power system oscillations ; Power system stability ; prediction error method ; Recursive ; recursive maximum likelihood ; Studies ; Taylor series ; Variance</subject><ispartof>IEEE transactions on power systems, 2013-02, Vol.28 (1), p.441-451</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c1213bd47e7461c10e3a1de92ba322ccbf04cb3cdacff9bc5c6845d9600eab923</citedby><cites>FETCH-LOGICAL-c328t-c1213bd47e7461c10e3a1de92ba322ccbf04cb3cdacff9bc5c6845d9600eab923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6246656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6246656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dosiek, L.</creatorcontrib><creatorcontrib>Pierre, J. W.</creatorcontrib><creatorcontrib>Follum, J.</creatorcontrib><title>A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes With Error Bounds</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Accurate and near real-time estimates of electromechanical modes are of great importance since the modal damping is a key indicator of the stability of the power system. If the estimates of the electromechanical modes are to be useful, knowing the variability in the estimates is critically important. This paper presents a method of directly estimating the variance of each mode estimate in addition to estimating the frequency and damping of each mode in an online setting using a recursive maximum likelihood (RML) estimator. The variance estimates are achieved using two closed-form multidimensional Taylor series approximations, the details of which are fully derived here. The proposed method is validated using a Monte Carlo simulation with a low order model of the Western Electricity Coordinating Council (WECC) power system under both ambient and probing conditions, with multiple modes closely spaced in frequency, and is compared to the regularized robust recursive least squares (R3LS) method. It is also successfully applied to phasor measurement unit (PMU) data collected from the actual WECC system, also under both ambient and probing conditions.</description><subject>Computer simulation</subject><subject>Damping</subject><subject>Electric power generation</subject><subject>Electromechanical modes</subject><subject>error bounds</subject><subject>Estimates</subject><subject>Estimating</subject><subject>Frequency estimation</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>On-line systems</subject><subject>power system monitoring</subject><subject>power system oscillations</subject><subject>Power system stability</subject><subject>prediction error method</subject><subject>Recursive</subject><subject>recursive maximum likelihood</subject><subject>Studies</subject><subject>Taylor series</subject><subject>Variance</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctOwzAQRS0EEuXxA7CxxIZNih-x4yxLVR5SKxAUsbQcZ6IakrjYCYK_J6XAgsVoFnPuaDQHoRNKxpSS_GJ5__zwOGaEsjFjhHPGd9CICqESIrN8F42IUiJRuSD76CDGF0KIHAYj5Cf4AWwfonsHvDAfrukbPHevULuV9yWexc41pvMBV0N1K8B3be1a-B0432Jf4VkNtgu-AbsyrbOmxgtfQsTPrlvhWQhD9tL3bRmP0F5l6gjHP_0QPV3NltObZH53fTudzBPLmeoSSxnlRZlmkKWSWkqAG1pCzgrDGbO2qEhqC25LY6sqL6ywUqWizCUhYIqc8UN0vt27Dv6th9jpxkULdW1a8H3UlFMhFVVSDujZP_TF96EdrtOUZYwIlWdqoNiWssHHGKDS6zA8IHxqSvTGgf52oDcO9I-DIXS6DTkA-AtIlkopJP8CJ-aEXA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Dosiek, L.</creator><creator>Pierre, J. W.</creator><creator>Follum, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20130201</creationdate><title>A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes With Error Bounds</title><author>Dosiek, L. ; Pierre, J. W. ; Follum, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c1213bd47e7461c10e3a1de92ba322ccbf04cb3cdacff9bc5c6845d9600eab923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Damping</topic><topic>Electric power generation</topic><topic>Electromechanical modes</topic><topic>error bounds</topic><topic>Estimates</topic><topic>Estimating</topic><topic>Frequency estimation</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>On-line systems</topic><topic>power system monitoring</topic><topic>power system oscillations</topic><topic>Power system stability</topic><topic>prediction error method</topic><topic>Recursive</topic><topic>recursive maximum likelihood</topic><topic>Studies</topic><topic>Taylor series</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dosiek, L.</creatorcontrib><creatorcontrib>Pierre, J. W.</creatorcontrib><creatorcontrib>Follum, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dosiek, L.</au><au>Pierre, J. W.</au><au>Follum, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes With Error Bounds</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>28</volume><issue>1</issue><spage>441</spage><epage>451</epage><pages>441-451</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Accurate and near real-time estimates of electromechanical modes are of great importance since the modal damping is a key indicator of the stability of the power system. If the estimates of the electromechanical modes are to be useful, knowing the variability in the estimates is critically important. This paper presents a method of directly estimating the variance of each mode estimate in addition to estimating the frequency and damping of each mode in an online setting using a recursive maximum likelihood (RML) estimator. The variance estimates are achieved using two closed-form multidimensional Taylor series approximations, the details of which are fully derived here. The proposed method is validated using a Monte Carlo simulation with a low order model of the Western Electricity Coordinating Council (WECC) power system under both ambient and probing conditions, with multiple modes closely spaced in frequency, and is compared to the regularized robust recursive least squares (R3LS) method. It is also successfully applied to phasor measurement unit (PMU) data collected from the actual WECC system, also under both ambient and probing conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2012.2203323</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2013-02, Vol.28 (1), p.441-451
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_1272058978
source IEEE Electronic Library (IEL)
subjects Computer simulation
Damping
Electric power generation
Electromechanical modes
error bounds
Estimates
Estimating
Frequency estimation
Load modeling
Mathematical model
Maximum likelihood estimation
Monte Carlo methods
Monte Carlo simulation
On-line systems
power system monitoring
power system oscillations
Power system stability
prediction error method
Recursive
recursive maximum likelihood
Studies
Taylor series
Variance
title A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes With Error Bounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Recursive%20Maximum%20Likelihood%20Estimator%20for%20the%20Online%20Estimation%20of%20Electromechanical%20Modes%20With%20Error%20Bounds&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Dosiek,%20L.&rft.date=2013-02-01&rft.volume=28&rft.issue=1&rft.spage=441&rft.epage=451&rft.pages=441-451&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2012.2203323&rft_dat=%3Cproquest_RIE%3E1315681866%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272058978&rft_id=info:pmid/&rft_ieee_id=6246656&rfr_iscdi=true