Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot

Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (3), p.820-821
Hauptverfasser: Short, Francesca L., Pei, Xue Y., Blower, Tim R., Ong, Shue-Li, Fineran, Peter C., Luisi, Ben F., Salmond, George P. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 3
container_start_page 820
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Short, Francesca L.
Pei, Xue Y.
Blower, Tim R.
Ong, Shue-Li
Fineran, Peter C.
Luisi, Ben F.
Salmond, George P. C.
description Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.
doi_str_mv 10.1073/pnas.1216039110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1270561175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42006361</jstor_id><sourcerecordid>42006361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</originalsourceid><addsrcrecordid>eNpVkd1rHCEUxaW0NNu0z31qEfI8iVcdR18KIaQfEFrox7Oo4yRuZ3Wrbuj-93XYdJuCIOLvnHu4B6HXQM6BDOxiG005BwqCMAVAnqAVEAWd4Io8RStC6NBJTvkJelHKmhCiekmeoxPKqBgAhhVaf_OzdzXch7rHJo64-HnqTCl-Y-c9DhHXO49dijWnGacJG2yNqz4HM-OafjfALsJ2aljeDscUXRpDvMVfP1_ibfG7Mf2Mqb5EzyYzF__q4T5FP95ff7_62N18-fDp6vKmc1yI2kkmOSgjwRlvPbDRwKCk9MAZHa0QgtJRKgvGKqsmxnsHYLkHNU1sJM6zU_Tu4Lvd2Y0fnW_Zzay3OWxM3utkgv7_J4Y7fZvuNevb2mTfDM4eDHL6tfOl6nXa5dgya6AD6UXb3EJdHCiXUynZT8cJQPRSjl7K0f_KaYq3j4Md-b9tPAIW5dGu-TF9TTk04M0BWJea8pHglBDBBLA_2Qugjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270561175</pqid></control><display><type>article</type><title>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Short, Francesca L. ; Pei, Xue Y. ; Blower, Tim R. ; Ong, Shue-Li ; Fineran, Peter C. ; Luisi, Ben F. ; Salmond, George P. C.</creator><creatorcontrib>Short, Francesca L. ; Pei, Xue Y. ; Blower, Tim R. ; Ong, Shue-Li ; Fineran, Peter C. ; Luisi, Ben F. ; Salmond, George P. C.</creatorcontrib><description>Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216039110</identifier><identifier>PMID: 23267117</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Antitoxins - chemistry ; Antitoxins - genetics ; Antitoxins - metabolism ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - antagonists &amp; inhibitors ; Bacterial Toxins - chemistry ; Bacterial Toxins - genetics ; Base Sequence ; Biological Sciences ; Crystallography, X-Ray ; Enzymes ; Genotype &amp; phenotype ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Nucleic Acid Conformation ; Pectobacterium - genetics ; Pectobacterium - metabolism ; Plasmids - genetics ; Plasmids - metabolism ; PNAS Plus ; PNAS PLUS: AUTHOR SUMMARIES ; Proteins ; Ribonucleases - chemistry ; Ribonucleases - genetics ; Ribonucleases - metabolism ; Ribonucleic acid ; RNA ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Untranslated - chemistry ; RNA, Untranslated - genetics ; RNA, Untranslated - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Toxins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.820-821</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</citedby><cites>FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42006361$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42006361$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23267117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Short, Francesca L.</creatorcontrib><creatorcontrib>Pei, Xue Y.</creatorcontrib><creatorcontrib>Blower, Tim R.</creatorcontrib><creatorcontrib>Ong, Shue-Li</creatorcontrib><creatorcontrib>Fineran, Peter C.</creatorcontrib><creatorcontrib>Luisi, Ben F.</creatorcontrib><creatorcontrib>Salmond, George P. C.</creatorcontrib><title>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.</description><subject>Amino Acid Sequence</subject><subject>Antitoxins - chemistry</subject><subject>Antitoxins - genetics</subject><subject>Antitoxins - metabolism</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - antagonists &amp; inhibitors</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - genetics</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Genotype &amp; phenotype</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nucleic Acid Conformation</subject><subject>Pectobacterium - genetics</subject><subject>Pectobacterium - metabolism</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>PNAS Plus</subject><subject>PNAS PLUS: AUTHOR SUMMARIES</subject><subject>Proteins</subject><subject>Ribonucleases - chemistry</subject><subject>Ribonucleases - genetics</subject><subject>Ribonucleases - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Untranslated - chemistry</subject><subject>RNA, Untranslated - genetics</subject><subject>RNA, Untranslated - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Toxins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1rHCEUxaW0NNu0z31qEfI8iVcdR18KIaQfEFrox7Oo4yRuZ3Wrbuj-93XYdJuCIOLvnHu4B6HXQM6BDOxiG005BwqCMAVAnqAVEAWd4Io8RStC6NBJTvkJelHKmhCiekmeoxPKqBgAhhVaf_OzdzXch7rHJo64-HnqTCl-Y-c9DhHXO49dijWnGacJG2yNqz4HM-OafjfALsJ2aljeDscUXRpDvMVfP1_ibfG7Mf2Mqb5EzyYzF__q4T5FP95ff7_62N18-fDp6vKmc1yI2kkmOSgjwRlvPbDRwKCk9MAZHa0QgtJRKgvGKqsmxnsHYLkHNU1sJM6zU_Tu4Lvd2Y0fnW_Zzay3OWxM3utkgv7_J4Y7fZvuNevb2mTfDM4eDHL6tfOl6nXa5dgya6AD6UXb3EJdHCiXUynZT8cJQPRSjl7K0f_KaYq3j4Md-b9tPAIW5dGu-TF9TTk04M0BWJea8pHglBDBBLA_2Qugjg</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Short, Francesca L.</creator><creator>Pei, Xue Y.</creator><creator>Blower, Tim R.</creator><creator>Ong, Shue-Li</creator><creator>Fineran, Peter C.</creator><creator>Luisi, Ben F.</creator><creator>Salmond, George P. C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130115</creationdate><title>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</title><author>Short, Francesca L. ; Pei, Xue Y. ; Blower, Tim R. ; Ong, Shue-Li ; Fineran, Peter C. ; Luisi, Ben F. ; Salmond, George P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Antitoxins - chemistry</topic><topic>Antitoxins - genetics</topic><topic>Antitoxins - metabolism</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - antagonists &amp; inhibitors</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - genetics</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Genotype &amp; phenotype</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nucleic Acid Conformation</topic><topic>Pectobacterium - genetics</topic><topic>Pectobacterium - metabolism</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>PNAS Plus</topic><topic>PNAS PLUS: AUTHOR SUMMARIES</topic><topic>Proteins</topic><topic>Ribonucleases - chemistry</topic><topic>Ribonucleases - genetics</topic><topic>Ribonucleases - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Untranslated - chemistry</topic><topic>RNA, Untranslated - genetics</topic><topic>RNA, Untranslated - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Short, Francesca L.</creatorcontrib><creatorcontrib>Pei, Xue Y.</creatorcontrib><creatorcontrib>Blower, Tim R.</creatorcontrib><creatorcontrib>Ong, Shue-Li</creatorcontrib><creatorcontrib>Fineran, Peter C.</creatorcontrib><creatorcontrib>Luisi, Ben F.</creatorcontrib><creatorcontrib>Salmond, George P. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Short, Francesca L.</au><au>Pei, Xue Y.</au><au>Blower, Tim R.</au><au>Ong, Shue-Li</au><au>Fineran, Peter C.</au><au>Luisi, Ben F.</au><au>Salmond, George P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>110</volume><issue>3</issue><spage>820</spage><epage>821</epage><pages>820-821</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23267117</pmid><doi>10.1073/pnas.1216039110</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.820-821
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1270561175
source MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR
subjects Amino Acid Sequence
Antitoxins - chemistry
Antitoxins - genetics
Antitoxins - metabolism
Bacillus thuringiensis - genetics
Bacillus thuringiensis - metabolism
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Toxins - antagonists & inhibitors
Bacterial Toxins - chemistry
Bacterial Toxins - genetics
Base Sequence
Biological Sciences
Crystallography, X-Ray
Enzymes
Genotype & phenotype
Models, Molecular
Molecular Sequence Data
Mutagenesis
Nucleic Acid Conformation
Pectobacterium - genetics
Pectobacterium - metabolism
Plasmids - genetics
Plasmids - metabolism
PNAS Plus
PNAS PLUS: AUTHOR SUMMARIES
Proteins
Ribonucleases - chemistry
Ribonucleases - genetics
Ribonucleases - metabolism
Ribonucleic acid
RNA
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Untranslated - chemistry
RNA, Untranslated - genetics
RNA, Untranslated - metabolism
Sequence Homology, Amino Acid
Substrate Specificity
Toxins
title Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selectivity%20and%20self-assembly%20in%20the%20control%20of%20a%20bacterial%20toxin%20by%20an%20antitoxic%20noncoding%20RNA%20pseudoknot&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Short,%20Francesca%20L.&rft.date=2013-01-15&rft.volume=110&rft.issue=3&rft.spage=820&rft.epage=821&rft.pages=820-821&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216039110&rft_dat=%3Cjstor_proqu%3E42006361%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270561175&rft_id=info:pmid/23267117&rft_jstor_id=42006361&rfr_iscdi=true