Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot
Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (3), p.820-821 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 821 |
---|---|
container_issue | 3 |
container_start_page | 820 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Short, Francesca L. Pei, Xue Y. Blower, Tim R. Ong, Shue-Li Fineran, Peter C. Luisi, Ben F. Salmond, George P. C. |
description | Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts. |
doi_str_mv | 10.1073/pnas.1216039110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1270561175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42006361</jstor_id><sourcerecordid>42006361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</originalsourceid><addsrcrecordid>eNpVkd1rHCEUxaW0NNu0z31qEfI8iVcdR18KIaQfEFrox7Oo4yRuZ3Wrbuj-93XYdJuCIOLvnHu4B6HXQM6BDOxiG005BwqCMAVAnqAVEAWd4Io8RStC6NBJTvkJelHKmhCiekmeoxPKqBgAhhVaf_OzdzXch7rHJo64-HnqTCl-Y-c9DhHXO49dijWnGacJG2yNqz4HM-OafjfALsJ2aljeDscUXRpDvMVfP1_ibfG7Mf2Mqb5EzyYzF__q4T5FP95ff7_62N18-fDp6vKmc1yI2kkmOSgjwRlvPbDRwKCk9MAZHa0QgtJRKgvGKqsmxnsHYLkHNU1sJM6zU_Tu4Lvd2Y0fnW_Zzay3OWxM3utkgv7_J4Y7fZvuNevb2mTfDM4eDHL6tfOl6nXa5dgya6AD6UXb3EJdHCiXUynZT8cJQPRSjl7K0f_KaYq3j4Md-b9tPAIW5dGu-TF9TTk04M0BWJea8pHglBDBBLA_2Qugjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270561175</pqid></control><display><type>article</type><title>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Short, Francesca L. ; Pei, Xue Y. ; Blower, Tim R. ; Ong, Shue-Li ; Fineran, Peter C. ; Luisi, Ben F. ; Salmond, George P. C.</creator><creatorcontrib>Short, Francesca L. ; Pei, Xue Y. ; Blower, Tim R. ; Ong, Shue-Li ; Fineran, Peter C. ; Luisi, Ben F. ; Salmond, George P. C.</creatorcontrib><description>Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216039110</identifier><identifier>PMID: 23267117</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Antitoxins - chemistry ; Antitoxins - genetics ; Antitoxins - metabolism ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - antagonists & inhibitors ; Bacterial Toxins - chemistry ; Bacterial Toxins - genetics ; Base Sequence ; Biological Sciences ; Crystallography, X-Ray ; Enzymes ; Genotype & phenotype ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Nucleic Acid Conformation ; Pectobacterium - genetics ; Pectobacterium - metabolism ; Plasmids - genetics ; Plasmids - metabolism ; PNAS Plus ; PNAS PLUS: AUTHOR SUMMARIES ; Proteins ; Ribonucleases - chemistry ; Ribonucleases - genetics ; Ribonucleases - metabolism ; Ribonucleic acid ; RNA ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Untranslated - chemistry ; RNA, Untranslated - genetics ; RNA, Untranslated - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Toxins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.820-821</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</citedby><cites>FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42006361$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42006361$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23267117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Short, Francesca L.</creatorcontrib><creatorcontrib>Pei, Xue Y.</creatorcontrib><creatorcontrib>Blower, Tim R.</creatorcontrib><creatorcontrib>Ong, Shue-Li</creatorcontrib><creatorcontrib>Fineran, Peter C.</creatorcontrib><creatorcontrib>Luisi, Ben F.</creatorcontrib><creatorcontrib>Salmond, George P. C.</creatorcontrib><title>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.</description><subject>Amino Acid Sequence</subject><subject>Antitoxins - chemistry</subject><subject>Antitoxins - genetics</subject><subject>Antitoxins - metabolism</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - antagonists & inhibitors</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - genetics</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Genotype & phenotype</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nucleic Acid Conformation</subject><subject>Pectobacterium - genetics</subject><subject>Pectobacterium - metabolism</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>PNAS Plus</subject><subject>PNAS PLUS: AUTHOR SUMMARIES</subject><subject>Proteins</subject><subject>Ribonucleases - chemistry</subject><subject>Ribonucleases - genetics</subject><subject>Ribonucleases - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Untranslated - chemistry</subject><subject>RNA, Untranslated - genetics</subject><subject>RNA, Untranslated - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Toxins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1rHCEUxaW0NNu0z31qEfI8iVcdR18KIaQfEFrox7Oo4yRuZ3Wrbuj-93XYdJuCIOLvnHu4B6HXQM6BDOxiG005BwqCMAVAnqAVEAWd4Io8RStC6NBJTvkJelHKmhCiekmeoxPKqBgAhhVaf_OzdzXch7rHJo64-HnqTCl-Y-c9DhHXO49dijWnGacJG2yNqz4HM-OafjfALsJ2aljeDscUXRpDvMVfP1_ibfG7Mf2Mqb5EzyYzF__q4T5FP95ff7_62N18-fDp6vKmc1yI2kkmOSgjwRlvPbDRwKCk9MAZHa0QgtJRKgvGKqsmxnsHYLkHNU1sJM6zU_Tu4Lvd2Y0fnW_Zzay3OWxM3utkgv7_J4Y7fZvuNevb2mTfDM4eDHL6tfOl6nXa5dgya6AD6UXb3EJdHCiXUynZT8cJQPRSjl7K0f_KaYq3j4Md-b9tPAIW5dGu-TF9TTk04M0BWJea8pHglBDBBLA_2Qugjg</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Short, Francesca L.</creator><creator>Pei, Xue Y.</creator><creator>Blower, Tim R.</creator><creator>Ong, Shue-Li</creator><creator>Fineran, Peter C.</creator><creator>Luisi, Ben F.</creator><creator>Salmond, George P. C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130115</creationdate><title>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</title><author>Short, Francesca L. ; Pei, Xue Y. ; Blower, Tim R. ; Ong, Shue-Li ; Fineran, Peter C. ; Luisi, Ben F. ; Salmond, George P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-838419a81caebe13da17988e1432db66622d89b1ab9b9f345c11b4e19ff3d0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Antitoxins - chemistry</topic><topic>Antitoxins - genetics</topic><topic>Antitoxins - metabolism</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - antagonists & inhibitors</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - genetics</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Genotype & phenotype</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nucleic Acid Conformation</topic><topic>Pectobacterium - genetics</topic><topic>Pectobacterium - metabolism</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>PNAS Plus</topic><topic>PNAS PLUS: AUTHOR SUMMARIES</topic><topic>Proteins</topic><topic>Ribonucleases - chemistry</topic><topic>Ribonucleases - genetics</topic><topic>Ribonucleases - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Untranslated - chemistry</topic><topic>RNA, Untranslated - genetics</topic><topic>RNA, Untranslated - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Short, Francesca L.</creatorcontrib><creatorcontrib>Pei, Xue Y.</creatorcontrib><creatorcontrib>Blower, Tim R.</creatorcontrib><creatorcontrib>Ong, Shue-Li</creatorcontrib><creatorcontrib>Fineran, Peter C.</creatorcontrib><creatorcontrib>Luisi, Ben F.</creatorcontrib><creatorcontrib>Salmond, George P. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Short, Francesca L.</au><au>Pei, Xue Y.</au><au>Blower, Tim R.</au><au>Ong, Shue-Li</au><au>Fineran, Peter C.</au><au>Luisi, Ben F.</au><au>Salmond, George P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>110</volume><issue>3</issue><spage>820</spage><epage>821</epage><pages>820-821</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin–antitoxin systems. In type III toxin–antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN Pa ) and Bacillus thuringiensis (ToxIN Bt ) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an “addictive” plasmid maintenance phenotype. We demonstrate that ToxI Pa can inhibit ToxN Pa in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI Pa RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN Bt complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23267117</pmid><doi>10.1073/pnas.1216039110</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.820-821 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1270561175 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR |
subjects | Amino Acid Sequence Antitoxins - chemistry Antitoxins - genetics Antitoxins - metabolism Bacillus thuringiensis - genetics Bacillus thuringiensis - metabolism Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Toxins - antagonists & inhibitors Bacterial Toxins - chemistry Bacterial Toxins - genetics Base Sequence Biological Sciences Crystallography, X-Ray Enzymes Genotype & phenotype Models, Molecular Molecular Sequence Data Mutagenesis Nucleic Acid Conformation Pectobacterium - genetics Pectobacterium - metabolism Plasmids - genetics Plasmids - metabolism PNAS Plus PNAS PLUS: AUTHOR SUMMARIES Proteins Ribonucleases - chemistry Ribonucleases - genetics Ribonucleases - metabolism Ribonucleic acid RNA RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA, Bacterial - metabolism RNA, Untranslated - chemistry RNA, Untranslated - genetics RNA, Untranslated - metabolism Sequence Homology, Amino Acid Substrate Specificity Toxins |
title | Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selectivity%20and%20self-assembly%20in%20the%20control%20of%20a%20bacterial%20toxin%20by%20an%20antitoxic%20noncoding%20RNA%20pseudoknot&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Short,%20Francesca%20L.&rft.date=2013-01-15&rft.volume=110&rft.issue=3&rft.spage=820&rft.epage=821&rft.pages=820-821&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216039110&rft_dat=%3Cjstor_proqu%3E42006361%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270561175&rft_id=info:pmid/23267117&rft_jstor_id=42006361&rfr_iscdi=true |