Predicting new product adoption using Bayesian truth serum
This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered befo...
Gespeichert in:
Veröffentlicht in: | Journal of medical marketing 2011-02, Vol.11 (1), p.6-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 6 |
container_title | Journal of medical marketing |
container_volume | 11 |
creator | Howie, Patrick J. Wang, Ying Tsai, Joanne |
description | This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement. |
doi_str_mv | 10.1057/jmm.2010.19 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1270292121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1057_jmm.2010.19</sage_id><sourcerecordid>2867514611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgCo6jKx_AghtBOubWS9w5gzcY0IWuQ5qcji22HXNB5u1NqQwuXCUhH_85_AidE7wgOCtu2q5bUDy-xAGakYJnaSEIPdzfMT9GJ861GGeclnSGbl8tmEb7pt8kPXwnWzuYoH2izLD1zdAnwY1fS7UD16g-8Tb4j8SBDd0pOqrVp4Oz33OO3h_u31ZP6frl8Xl1t041zblPBQbIoaygVEQxbBRnhnOdZyyjKs9rrJgxWjBe1IIxUWYECBFcVHVRcZVrNkeXU27c7SuA87Idgu3jSElogamghJKoriel7eCchVpubdMpu5MEy7EcGcuRYzmSiKivJu3UBv7k_UsvJtorHyzsY6MZSRQ_ytJurw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270292121</pqid></control><display><type>article</type><title>Predicting new product adoption using Bayesian truth serum</title><source>Access via SAGE</source><source>Alma/SFX Local Collection</source><creator>Howie, Patrick J. ; Wang, Ying ; Tsai, Joanne</creator><creatorcontrib>Howie, Patrick J. ; Wang, Ying ; Tsai, Joanne</creatorcontrib><description>This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.</description><identifier>ISSN: 1745-7904</identifier><identifier>EISSN: 1745-7912</identifier><identifier>DOI: 10.1057/jmm.2010.19</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Consumer behavior ; Forecasting techniques ; Marketing ; Performance evaluation ; Probability ; Product acceptance ; Product development ; Random variables</subject><ispartof>Journal of medical marketing, 2011-02, Vol.11 (1), p.6-16</ispartof><rights>2011 SAGE Publications</rights><rights>SAGE Publications © Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</citedby><cites>FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1057/jmm.2010.19$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1057/jmm.2010.19$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21821,27926,27927,43623,43624</link.rule.ids></links><search><creatorcontrib>Howie, Patrick J.</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Tsai, Joanne</creatorcontrib><title>Predicting new product adoption using Bayesian truth serum</title><title>Journal of medical marketing</title><description>This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.</description><subject>Consumer behavior</subject><subject>Forecasting techniques</subject><subject>Marketing</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Product acceptance</subject><subject>Product development</subject><subject>Random variables</subject><issn>1745-7904</issn><issn>1745-7912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKxDAUBuAgCo6jKx_AghtBOubWS9w5gzcY0IWuQ5qcji22HXNB5u1NqQwuXCUhH_85_AidE7wgOCtu2q5bUDy-xAGakYJnaSEIPdzfMT9GJ861GGeclnSGbl8tmEb7pt8kPXwnWzuYoH2izLD1zdAnwY1fS7UD16g-8Tb4j8SBDd0pOqrVp4Oz33OO3h_u31ZP6frl8Xl1t041zblPBQbIoaygVEQxbBRnhnOdZyyjKs9rrJgxWjBe1IIxUWYECBFcVHVRcZVrNkeXU27c7SuA87Idgu3jSElogamghJKoriel7eCchVpubdMpu5MEy7EcGcuRYzmSiKivJu3UBv7k_UsvJtorHyzsY6MZSRQ_ytJurw</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Howie, Patrick J.</creator><creator>Wang, Ying</creator><creator>Tsai, Joanne</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201102</creationdate><title>Predicting new product adoption using Bayesian truth serum</title><author>Howie, Patrick J. ; Wang, Ying ; Tsai, Joanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Consumer behavior</topic><topic>Forecasting techniques</topic><topic>Marketing</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Product acceptance</topic><topic>Product development</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howie, Patrick J.</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Tsai, Joanne</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of medical marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howie, Patrick J.</au><au>Wang, Ying</au><au>Tsai, Joanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting new product adoption using Bayesian truth serum</atitle><jtitle>Journal of medical marketing</jtitle><date>2011-02</date><risdate>2011</risdate><volume>11</volume><issue>1</issue><spage>6</spage><epage>16</epage><pages>6-16</pages><issn>1745-7904</issn><eissn>1745-7912</eissn><abstract>This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1057/jmm.2010.19</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-7904 |
ispartof | Journal of medical marketing, 2011-02, Vol.11 (1), p.6-16 |
issn | 1745-7904 1745-7912 |
language | eng |
recordid | cdi_proquest_journals_1270292121 |
source | Access via SAGE; Alma/SFX Local Collection |
subjects | Consumer behavior Forecasting techniques Marketing Performance evaluation Probability Product acceptance Product development Random variables |
title | Predicting new product adoption using Bayesian truth serum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20new%20product%20adoption%20using%20Bayesian%20truth%20serum&rft.jtitle=Journal%20of%20medical%20marketing&rft.au=Howie,%20Patrick%20J.&rft.date=2011-02&rft.volume=11&rft.issue=1&rft.spage=6&rft.epage=16&rft.pages=6-16&rft.issn=1745-7904&rft.eissn=1745-7912&rft_id=info:doi/10.1057/jmm.2010.19&rft_dat=%3Cproquest_cross%3E2867514611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270292121&rft_id=info:pmid/&rft_sage_id=10.1057_jmm.2010.19&rfr_iscdi=true |