Predicting new product adoption using Bayesian truth serum

This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered befo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical marketing 2011-02, Vol.11 (1), p.6-16
Hauptverfasser: Howie, Patrick J., Wang, Ying, Tsai, Joanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 6
container_title Journal of medical marketing
container_volume 11
creator Howie, Patrick J.
Wang, Ying
Tsai, Joanne
description This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.
doi_str_mv 10.1057/jmm.2010.19
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1270292121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1057_jmm.2010.19</sage_id><sourcerecordid>2867514611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgCo6jKx_AghtBOubWS9w5gzcY0IWuQ5qcji22HXNB5u1NqQwuXCUhH_85_AidE7wgOCtu2q5bUDy-xAGakYJnaSEIPdzfMT9GJ861GGeclnSGbl8tmEb7pt8kPXwnWzuYoH2izLD1zdAnwY1fS7UD16g-8Tb4j8SBDd0pOqrVp4Oz33OO3h_u31ZP6frl8Xl1t041zblPBQbIoaygVEQxbBRnhnOdZyyjKs9rrJgxWjBe1IIxUWYECBFcVHVRcZVrNkeXU27c7SuA87Idgu3jSElogamghJKoriel7eCchVpubdMpu5MEy7EcGcuRYzmSiKivJu3UBv7k_UsvJtorHyzsY6MZSRQ_ytJurw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270292121</pqid></control><display><type>article</type><title>Predicting new product adoption using Bayesian truth serum</title><source>Access via SAGE</source><source>Alma/SFX Local Collection</source><creator>Howie, Patrick J. ; Wang, Ying ; Tsai, Joanne</creator><creatorcontrib>Howie, Patrick J. ; Wang, Ying ; Tsai, Joanne</creatorcontrib><description>This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.</description><identifier>ISSN: 1745-7904</identifier><identifier>EISSN: 1745-7912</identifier><identifier>DOI: 10.1057/jmm.2010.19</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Consumer behavior ; Forecasting techniques ; Marketing ; Performance evaluation ; Probability ; Product acceptance ; Product development ; Random variables</subject><ispartof>Journal of medical marketing, 2011-02, Vol.11 (1), p.6-16</ispartof><rights>2011 SAGE Publications</rights><rights>SAGE Publications © Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</citedby><cites>FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1057/jmm.2010.19$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1057/jmm.2010.19$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21821,27926,27927,43623,43624</link.rule.ids></links><search><creatorcontrib>Howie, Patrick J.</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Tsai, Joanne</creatorcontrib><title>Predicting new product adoption using Bayesian truth serum</title><title>Journal of medical marketing</title><description>This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.</description><subject>Consumer behavior</subject><subject>Forecasting techniques</subject><subject>Marketing</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Product acceptance</subject><subject>Product development</subject><subject>Random variables</subject><issn>1745-7904</issn><issn>1745-7912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKxDAUBuAgCo6jKx_AghtBOubWS9w5gzcY0IWuQ5qcji22HXNB5u1NqQwuXCUhH_85_AidE7wgOCtu2q5bUDy-xAGakYJnaSEIPdzfMT9GJ861GGeclnSGbl8tmEb7pt8kPXwnWzuYoH2izLD1zdAnwY1fS7UD16g-8Tb4j8SBDd0pOqrVp4Oz33OO3h_u31ZP6frl8Xl1t041zblPBQbIoaygVEQxbBRnhnOdZyyjKs9rrJgxWjBe1IIxUWYECBFcVHVRcZVrNkeXU27c7SuA87Idgu3jSElogamghJKoriel7eCchVpubdMpu5MEy7EcGcuRYzmSiKivJu3UBv7k_UsvJtorHyzsY6MZSRQ_ytJurw</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Howie, Patrick J.</creator><creator>Wang, Ying</creator><creator>Tsai, Joanne</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201102</creationdate><title>Predicting new product adoption using Bayesian truth serum</title><author>Howie, Patrick J. ; Wang, Ying ; Tsai, Joanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-90ee6e8be8a1a30da43d44c65352a66f0a3ddc9347f9339851e11949bf7b4a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Consumer behavior</topic><topic>Forecasting techniques</topic><topic>Marketing</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Product acceptance</topic><topic>Product development</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howie, Patrick J.</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Tsai, Joanne</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of medical marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howie, Patrick J.</au><au>Wang, Ying</au><au>Tsai, Joanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting new product adoption using Bayesian truth serum</atitle><jtitle>Journal of medical marketing</jtitle><date>2011-02</date><risdate>2011</risdate><volume>11</volume><issue>1</issue><spage>6</spage><epage>16</epage><pages>6-16</pages><issn>1745-7904</issn><eissn>1745-7912</eissn><abstract>This article explores whether a modified version of recently proposed survey mechanism called a Bayesian Truth Serum (BTS), which is designed to provide more accurate subjective survey results, can be used to improve new product adoption forecasts. To validate the test, a survey is administered before the introduction of a new product, in which respondents are asked about their adoption of a product that is not yet available, and the survey results are compared to actual adoption once these products are available. The results indicate that prediction performance of the modified BTS model is improved by up to 36 per cent over the standard reference model, although both models show opportunities for additional improvement.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1057/jmm.2010.19</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-7904
ispartof Journal of medical marketing, 2011-02, Vol.11 (1), p.6-16
issn 1745-7904
1745-7912
language eng
recordid cdi_proquest_journals_1270292121
source Access via SAGE; Alma/SFX Local Collection
subjects Consumer behavior
Forecasting techniques
Marketing
Performance evaluation
Probability
Product acceptance
Product development
Random variables
title Predicting new product adoption using Bayesian truth serum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20new%20product%20adoption%20using%20Bayesian%20truth%20serum&rft.jtitle=Journal%20of%20medical%20marketing&rft.au=Howie,%20Patrick%20J.&rft.date=2011-02&rft.volume=11&rft.issue=1&rft.spage=6&rft.epage=16&rft.pages=6-16&rft.issn=1745-7904&rft.eissn=1745-7912&rft_id=info:doi/10.1057/jmm.2010.19&rft_dat=%3Cproquest_cross%3E2867514611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270292121&rft_id=info:pmid/&rft_sage_id=10.1057_jmm.2010.19&rfr_iscdi=true