Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch

Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal. Applied physics 2012-04, Vol.58 (1), p.10804
Hauptverfasser: Ikhlef, N., Hacib, T., Leroy, O., Mékiddèche, M.R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10804
container_title European physical journal. Applied physics
container_volume 58
creator Ikhlef, N.
Hacib, T.
Leroy, O.
Mékiddèche, M.R.
description Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is treated as a continuous, conducting fluid that satisfies the classical laws of motion and thermodynamics. This model combines fluid equations, similar to those used in fluid dynamics, with Maxwell’s equations. Steady fluid flow and temperature equations are simultaneously solved (direct method) using a finite elements method (FEM). The electromagnetic field equations are formulated in terms of potential vector with applied voltage source, so this model is physically more consistent, a more accurate and a faster simulation. The governing resistive MHD equations for an inductive plasma flow under local thermodynamic equilibrium (LTE) and laminar flow are presented, with appropriate boundary conditions. The model enabled to obtain the electromagnetic fields, temperature and flow velocity distributions also allows the determination of the electric parameters such as impedance of the plasma torch, total power, eddy losses, etc.
doi_str_mv 10.1051/epjap/2012110186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1267810648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861175761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-627fccf7d0f334c9d0130ae34f2ad1f9ae13f28acabdd3ec4e015418dea196663</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqWwM1piDr2zEycZUcVHpQo6FHW0XH-0KUkc7FTQf0-gCKa74X3eOz2EXCPcImQ4sd1OdRMGyBABC3FCRsgKkQBkcPq3p-ycXMS4AwAURTYii2ff1lVrVaDaN12wMVbr2tJGbVrb--3BBG8OrWoqTV3tPyJtvLEDsaHeUUW74PXA0Nl0QXsf9PaSnDlVR3v1O8fk9eF-OX1K5i-Ps-ndPNEcyj4RLHdau9yA4zzVpQHkoCxPHVMGXakscscKpdXaGG51agGzFAtjFZZCCD4mN8fe4YP3vY293Pl9aIeTEpnICwSRFkMKjikdfIzBOtmFqlHhIBHktzf5403-exuQ5IhUsbeff3kV3qTIeZ7JAlZyvlylmcBSIv8CbhhxXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267810648</pqid></control><display><type>article</type><title>Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Cambridge Journals</source><source>EDP Sciences</source><creator>Ikhlef, N. ; Hacib, T. ; Leroy, O. ; Mékiddèche, M.R.</creator><creatorcontrib>Ikhlef, N. ; Hacib, T. ; Leroy, O. ; Mékiddèche, M.R.</creatorcontrib><description>Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is treated as a continuous, conducting fluid that satisfies the classical laws of motion and thermodynamics. This model combines fluid equations, similar to those used in fluid dynamics, with Maxwell’s equations. Steady fluid flow and temperature equations are simultaneously solved (direct method) using a finite elements method (FEM). The electromagnetic field equations are formulated in terms of potential vector with applied voltage source, so this model is physically more consistent, a more accurate and a faster simulation. The governing resistive MHD equations for an inductive plasma flow under local thermodynamic equilibrium (LTE) and laminar flow are presented, with appropriate boundary conditions. The model enabled to obtain the electromagnetic fields, temperature and flow velocity distributions also allows the determination of the electric parameters such as impedance of the plasma torch, total power, eddy losses, etc.</description><identifier>ISSN: 1286-0042</identifier><identifier>EISSN: 1286-0050</identifier><identifier>DOI: 10.1051/epjap/2012110186</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><ispartof>European physical journal. Applied physics, 2012-04, Vol.58 (1), p.10804</ispartof><rights>EDP Sciences, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-627fccf7d0f334c9d0130ae34f2ad1f9ae13f28acabdd3ec4e015418dea196663</citedby><cites>FETCH-LOGICAL-c309t-627fccf7d0f334c9d0130ae34f2ad1f9ae13f28acabdd3ec4e015418dea196663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3714,27905,27906</link.rule.ids></links><search><creatorcontrib>Ikhlef, N.</creatorcontrib><creatorcontrib>Hacib, T.</creatorcontrib><creatorcontrib>Leroy, O.</creatorcontrib><creatorcontrib>Mékiddèche, M.R.</creatorcontrib><title>Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch</title><title>European physical journal. Applied physics</title><description>Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is treated as a continuous, conducting fluid that satisfies the classical laws of motion and thermodynamics. This model combines fluid equations, similar to those used in fluid dynamics, with Maxwell’s equations. Steady fluid flow and temperature equations are simultaneously solved (direct method) using a finite elements method (FEM). The electromagnetic field equations are formulated in terms of potential vector with applied voltage source, so this model is physically more consistent, a more accurate and a faster simulation. The governing resistive MHD equations for an inductive plasma flow under local thermodynamic equilibrium (LTE) and laminar flow are presented, with appropriate boundary conditions. The model enabled to obtain the electromagnetic fields, temperature and flow velocity distributions also allows the determination of the electric parameters such as impedance of the plasma torch, total power, eddy losses, etc.</description><issn>1286-0042</issn><issn>1286-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqWwM1piDr2zEycZUcVHpQo6FHW0XH-0KUkc7FTQf0-gCKa74X3eOz2EXCPcImQ4sd1OdRMGyBABC3FCRsgKkQBkcPq3p-ycXMS4AwAURTYii2ff1lVrVaDaN12wMVbr2tJGbVrb--3BBG8OrWoqTV3tPyJtvLEDsaHeUUW74PXA0Nl0QXsf9PaSnDlVR3v1O8fk9eF-OX1K5i-Ps-ndPNEcyj4RLHdau9yA4zzVpQHkoCxPHVMGXakscscKpdXaGG51agGzFAtjFZZCCD4mN8fe4YP3vY293Pl9aIeTEpnICwSRFkMKjikdfIzBOtmFqlHhIBHktzf5403-exuQ5IhUsbeff3kV3qTIeZ7JAlZyvlylmcBSIv8CbhhxXQ</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Ikhlef, N.</creator><creator>Hacib, T.</creator><creator>Leroy, O.</creator><creator>Mékiddèche, M.R.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201204</creationdate><title>Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch</title><author>Ikhlef, N. ; Hacib, T. ; Leroy, O. ; Mékiddèche, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-627fccf7d0f334c9d0130ae34f2ad1f9ae13f28acabdd3ec4e015418dea196663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikhlef, N.</creatorcontrib><creatorcontrib>Hacib, T.</creatorcontrib><creatorcontrib>Leroy, O.</creatorcontrib><creatorcontrib>Mékiddèche, M.R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European physical journal. Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikhlef, N.</au><au>Hacib, T.</au><au>Leroy, O.</au><au>Mékiddèche, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch</atitle><jtitle>European physical journal. Applied physics</jtitle><date>2012-04</date><risdate>2012</risdate><volume>58</volume><issue>1</issue><spage>10804</spage><pages>10804-</pages><issn>1286-0042</issn><eissn>1286-0050</eissn><abstract>Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is treated as a continuous, conducting fluid that satisfies the classical laws of motion and thermodynamics. This model combines fluid equations, similar to those used in fluid dynamics, with Maxwell’s equations. Steady fluid flow and temperature equations are simultaneously solved (direct method) using a finite elements method (FEM). The electromagnetic field equations are formulated in terms of potential vector with applied voltage source, so this model is physically more consistent, a more accurate and a faster simulation. The governing resistive MHD equations for an inductive plasma flow under local thermodynamic equilibrium (LTE) and laminar flow are presented, with appropriate boundary conditions. The model enabled to obtain the electromagnetic fields, temperature and flow velocity distributions also allows the determination of the electric parameters such as impedance of the plasma torch, total power, eddy losses, etc.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjap/2012110186</doi></addata></record>
fulltext fulltext
identifier ISSN: 1286-0042
ispartof European physical journal. Applied physics, 2012-04, Vol.58 (1), p.10804
issn 1286-0042
1286-0050
language eng
recordid cdi_proquest_journals_1267810648
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Cambridge Journals; EDP Sciences
title Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20compressible%20magnetohydrodynamic%20flows%20modeling%20of%20a%20process%20ICP%20torch&rft.jtitle=European%20physical%20journal.%20Applied%20physics&rft.au=Ikhlef,%20N.&rft.date=2012-04&rft.volume=58&rft.issue=1&rft.spage=10804&rft.pages=10804-&rft.issn=1286-0042&rft.eissn=1286-0050&rft_id=info:doi/10.1051/epjap/2012110186&rft_dat=%3Cproquest_cross%3E2861175761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267810648&rft_id=info:pmid/&rfr_iscdi=true