Developing an estimation strategy for a pesticide data program

The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of official statistics 1997-12, Vol.13 (4), p.367
Hauptverfasser: Kott, P.S, Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 367
container_title Journal of official statistics
container_volume 13
creator Kott, P.S
Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)
description The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.
format Article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_journals_1266843929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858992441</sourcerecordid><originalsourceid>FETCH-LOGICAL-b729-da89a29482cc7c04f26395dda188e5afcf6a3b93aa6c4ee749154507f66c59473</originalsourceid><addsrcrecordid>eNotjk1LAzEYhINYcG39CULA80K-k_ciSK1WKHiwB2_L22yybGk3NdkK_ntX6mkY5mFmrkglGOO1lcZek4oJJ2ol5OcNuS1lz5gEKXhFHp_DdzikUz90FAcaytgfcezTQMuYcQzdD40pU6Snv8j3baAtjpPNqct4XJBZxEMJd_86J9uX1Xa5rjfvr2_Lp029swLqFh2gAOWE99YzFYWRoNsWuXNBY_TRoNyBRDRehWAVcK00s9EYr0FZOScPl9pp9us8PWn26ZyHabHhwhinJAiYqPsLFTE12OW-NB8rDuAY51wz-Qt0LE4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266843929</pqid></control><display><type>article</type><title>Developing an estimation strategy for a pesticide data program</title><source>Sociological Abstracts</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kott, P.S ; Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creator><creatorcontrib>Kott, P.S ; Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creatorcontrib><description>The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.</description><identifier>ISSN: 0282-423X</identifier><identifier>EISSN: 2001-7367</identifier><language>eng</language><publisher>Stockholm: Statistics Sweden (SCB)</publisher><subject>ETATS UNIS ; EUA ; FRESH PRODUCTS ; FRUITS ; FRUTAS ; HORTALIZAS ; LEGUME ; METHODE STATISTIQUE ; METODOS ESTADISTICOS ; PESTICIDE ; PESTICIDES ; PLAGUICIDAS ; PRODUCTOS FRESCOS ; PRODUIT FRAIS ; RESIDU ; RESIDUES ; RESIDUOS ; STATISTICAL METHODS ; USA ; VEGETABLES</subject><ispartof>Journal of official statistics, 1997-12, Vol.13 (4), p.367</ispartof><rights>Copyright Statistics Sweden (SCB) Dec 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27348,33778</link.rule.ids></links><search><creatorcontrib>Kott, P.S</creatorcontrib><creatorcontrib>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creatorcontrib><title>Developing an estimation strategy for a pesticide data program</title><title>Journal of official statistics</title><description>The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.</description><subject>ETATS UNIS</subject><subject>EUA</subject><subject>FRESH PRODUCTS</subject><subject>FRUITS</subject><subject>FRUTAS</subject><subject>HORTALIZAS</subject><subject>LEGUME</subject><subject>METHODE STATISTIQUE</subject><subject>METODOS ESTADISTICOS</subject><subject>PESTICIDE</subject><subject>PESTICIDES</subject><subject>PLAGUICIDAS</subject><subject>PRODUCTOS FRESCOS</subject><subject>PRODUIT FRAIS</subject><subject>RESIDU</subject><subject>RESIDUES</subject><subject>RESIDUOS</subject><subject>STATISTICAL METHODS</subject><subject>USA</subject><subject>VEGETABLES</subject><issn>0282-423X</issn><issn>2001-7367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjk1LAzEYhINYcG39CULA80K-k_ciSK1WKHiwB2_L22yybGk3NdkK_ntX6mkY5mFmrkglGOO1lcZek4oJJ2ol5OcNuS1lz5gEKXhFHp_DdzikUz90FAcaytgfcezTQMuYcQzdD40pU6Snv8j3baAtjpPNqct4XJBZxEMJd_86J9uX1Xa5rjfvr2_Lp029swLqFh2gAOWE99YzFYWRoNsWuXNBY_TRoNyBRDRehWAVcK00s9EYr0FZOScPl9pp9us8PWn26ZyHabHhwhinJAiYqPsLFTE12OW-NB8rDuAY51wz-Qt0LE4A</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Kott, P.S</creator><creator>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creator><general>Statistics Sweden (SCB)</general><scope>FBQ</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7XB</scope><scope>88J</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>L6V</scope><scope>M2R</scope><scope>M2S</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>19971201</creationdate><title>Developing an estimation strategy for a pesticide data program</title><author>Kott, P.S ; Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b729-da89a29482cc7c04f26395dda188e5afcf6a3b93aa6c4ee749154507f66c59473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ETATS UNIS</topic><topic>EUA</topic><topic>FRESH PRODUCTS</topic><topic>FRUITS</topic><topic>FRUTAS</topic><topic>HORTALIZAS</topic><topic>LEGUME</topic><topic>METHODE STATISTIQUE</topic><topic>METODOS ESTADISTICOS</topic><topic>PESTICIDE</topic><topic>PESTICIDES</topic><topic>PLAGUICIDAS</topic><topic>PRODUCTOS FRESCOS</topic><topic>PRODUIT FRAIS</topic><topic>RESIDU</topic><topic>RESIDUES</topic><topic>RESIDUOS</topic><topic>STATISTICAL METHODS</topic><topic>USA</topic><topic>VEGETABLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kott, P.S</creatorcontrib><creatorcontrib>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creatorcontrib><collection>AGRIS</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of official statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kott, P.S</au><au>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing an estimation strategy for a pesticide data program</atitle><jtitle>Journal of official statistics</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>13</volume><issue>4</issue><spage>367</spage><pages>367-</pages><issn>0282-423X</issn><eissn>2001-7367</eissn><abstract>The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.</abstract><cop>Stockholm</cop><pub>Statistics Sweden (SCB)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0282-423X
ispartof Journal of official statistics, 1997-12, Vol.13 (4), p.367
issn 0282-423X
2001-7367
language eng
recordid cdi_proquest_journals_1266843929
source Sociological Abstracts; EZB-FREE-00999 freely available EZB journals
subjects ETATS UNIS
EUA
FRESH PRODUCTS
FRUITS
FRUTAS
HORTALIZAS
LEGUME
METHODE STATISTIQUE
METODOS ESTADISTICOS
PESTICIDE
PESTICIDES
PLAGUICIDAS
PRODUCTOS FRESCOS
PRODUIT FRAIS
RESIDU
RESIDUES
RESIDUOS
STATISTICAL METHODS
USA
VEGETABLES
title Developing an estimation strategy for a pesticide data program
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20an%20estimation%20strategy%20for%20a%20pesticide%20data%20program&rft.jtitle=Journal%20of%20official%20statistics&rft.au=Kott,%20P.S&rft.date=1997-12-01&rft.volume=13&rft.issue=4&rft.spage=367&rft.pages=367-&rft.issn=0282-423X&rft.eissn=2001-7367&rft_id=info:doi/&rft_dat=%3Cproquest_fao_a%3E2858992441%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266843929&rft_id=info:pmid/&rfr_iscdi=true