Developing an estimation strategy for a pesticide data program
The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular...
Gespeichert in:
Veröffentlicht in: | Journal of official statistics 1997-12, Vol.13 (4), p.367 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 367 |
container_title | Journal of official statistics |
container_volume | 13 |
creator | Kott, P.S Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.) |
description | The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals. |
format | Article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_journals_1266843929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858992441</sourcerecordid><originalsourceid>FETCH-LOGICAL-b729-da89a29482cc7c04f26395dda188e5afcf6a3b93aa6c4ee749154507f66c59473</originalsourceid><addsrcrecordid>eNotjk1LAzEYhINYcG39CULA80K-k_ciSK1WKHiwB2_L22yybGk3NdkK_ntX6mkY5mFmrkglGOO1lcZek4oJJ2ol5OcNuS1lz5gEKXhFHp_DdzikUz90FAcaytgfcezTQMuYcQzdD40pU6Snv8j3baAtjpPNqct4XJBZxEMJd_86J9uX1Xa5rjfvr2_Lp029swLqFh2gAOWE99YzFYWRoNsWuXNBY_TRoNyBRDRehWAVcK00s9EYr0FZOScPl9pp9us8PWn26ZyHabHhwhinJAiYqPsLFTE12OW-NB8rDuAY51wz-Qt0LE4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266843929</pqid></control><display><type>article</type><title>Developing an estimation strategy for a pesticide data program</title><source>Sociological Abstracts</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kott, P.S ; Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creator><creatorcontrib>Kott, P.S ; Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creatorcontrib><description>The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.</description><identifier>ISSN: 0282-423X</identifier><identifier>EISSN: 2001-7367</identifier><language>eng</language><publisher>Stockholm: Statistics Sweden (SCB)</publisher><subject>ETATS UNIS ; EUA ; FRESH PRODUCTS ; FRUITS ; FRUTAS ; HORTALIZAS ; LEGUME ; METHODE STATISTIQUE ; METODOS ESTADISTICOS ; PESTICIDE ; PESTICIDES ; PLAGUICIDAS ; PRODUCTOS FRESCOS ; PRODUIT FRAIS ; RESIDU ; RESIDUES ; RESIDUOS ; STATISTICAL METHODS ; USA ; VEGETABLES</subject><ispartof>Journal of official statistics, 1997-12, Vol.13 (4), p.367</ispartof><rights>Copyright Statistics Sweden (SCB) Dec 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27348,33778</link.rule.ids></links><search><creatorcontrib>Kott, P.S</creatorcontrib><creatorcontrib>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creatorcontrib><title>Developing an estimation strategy for a pesticide data program</title><title>Journal of official statistics</title><description>The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.</description><subject>ETATS UNIS</subject><subject>EUA</subject><subject>FRESH PRODUCTS</subject><subject>FRUITS</subject><subject>FRUTAS</subject><subject>HORTALIZAS</subject><subject>LEGUME</subject><subject>METHODE STATISTIQUE</subject><subject>METODOS ESTADISTICOS</subject><subject>PESTICIDE</subject><subject>PESTICIDES</subject><subject>PLAGUICIDAS</subject><subject>PRODUCTOS FRESCOS</subject><subject>PRODUIT FRAIS</subject><subject>RESIDU</subject><subject>RESIDUES</subject><subject>RESIDUOS</subject><subject>STATISTICAL METHODS</subject><subject>USA</subject><subject>VEGETABLES</subject><issn>0282-423X</issn><issn>2001-7367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjk1LAzEYhINYcG39CULA80K-k_ciSK1WKHiwB2_L22yybGk3NdkK_ntX6mkY5mFmrkglGOO1lcZek4oJJ2ol5OcNuS1lz5gEKXhFHp_DdzikUz90FAcaytgfcezTQMuYcQzdD40pU6Snv8j3baAtjpPNqct4XJBZxEMJd_86J9uX1Xa5rjfvr2_Lp029swLqFh2gAOWE99YzFYWRoNsWuXNBY_TRoNyBRDRehWAVcK00s9EYr0FZOScPl9pp9us8PWn26ZyHabHhwhinJAiYqPsLFTE12OW-NB8rDuAY51wz-Qt0LE4A</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Kott, P.S</creator><creator>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creator><general>Statistics Sweden (SCB)</general><scope>FBQ</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7XB</scope><scope>88J</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>L6V</scope><scope>M2R</scope><scope>M2S</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>19971201</creationdate><title>Developing an estimation strategy for a pesticide data program</title><author>Kott, P.S ; Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b729-da89a29482cc7c04f26395dda188e5afcf6a3b93aa6c4ee749154507f66c59473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ETATS UNIS</topic><topic>EUA</topic><topic>FRESH PRODUCTS</topic><topic>FRUITS</topic><topic>FRUTAS</topic><topic>HORTALIZAS</topic><topic>LEGUME</topic><topic>METHODE STATISTIQUE</topic><topic>METODOS ESTADISTICOS</topic><topic>PESTICIDE</topic><topic>PESTICIDES</topic><topic>PLAGUICIDAS</topic><topic>PRODUCTOS FRESCOS</topic><topic>PRODUIT FRAIS</topic><topic>RESIDU</topic><topic>RESIDUES</topic><topic>RESIDUOS</topic><topic>STATISTICAL METHODS</topic><topic>USA</topic><topic>VEGETABLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kott, P.S</creatorcontrib><creatorcontrib>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</creatorcontrib><collection>AGRIS</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of official statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kott, P.S</au><au>Carr, D.A. (National Agricultural Statistics Service, Fairfax, Va. (USA). Research Div.)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing an estimation strategy for a pesticide data program</atitle><jtitle>Journal of official statistics</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>13</volume><issue>4</issue><spage>367</spage><pages>367-</pages><issn>0282-423X</issn><eissn>2001-7367</eissn><abstract>The Agricultural Marketing Service's Pesticide Data Program (PDP) is a cooperative effort of U.S. Department of Agriculture (USDA) and several state agencies. The ultimate purpose of the program is to make scientific statements about the distribution of certain pesticide residues in particular products (mostly fresh fruits and vegetables) consumed by the U.S. public. Developing a statistically defensible estimation strategy for the PDP required overcoming a number of thorny problems. Chief among them was the non-random nature of the "sample" of participating states. Also of concern was the level-of-detection/level-of-quantification issue: not all potential levels of pesticide residue can be detected by a given lab; moreover, certain detectable levels are not quantifiable. A graphical method was developed to display parameter estimates (means and percentiles) in light of the detection/quantification problem. Included on the graphs (as an option) are fairly robust, model-based estimates of confidence intervals.</abstract><cop>Stockholm</cop><pub>Statistics Sweden (SCB)</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0282-423X |
ispartof | Journal of official statistics, 1997-12, Vol.13 (4), p.367 |
issn | 0282-423X 2001-7367 |
language | eng |
recordid | cdi_proquest_journals_1266843929 |
source | Sociological Abstracts; EZB-FREE-00999 freely available EZB journals |
subjects | ETATS UNIS EUA FRESH PRODUCTS FRUITS FRUTAS HORTALIZAS LEGUME METHODE STATISTIQUE METODOS ESTADISTICOS PESTICIDE PESTICIDES PLAGUICIDAS PRODUCTOS FRESCOS PRODUIT FRAIS RESIDU RESIDUES RESIDUOS STATISTICAL METHODS USA VEGETABLES |
title | Developing an estimation strategy for a pesticide data program |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20an%20estimation%20strategy%20for%20a%20pesticide%20data%20program&rft.jtitle=Journal%20of%20official%20statistics&rft.au=Kott,%20P.S&rft.date=1997-12-01&rft.volume=13&rft.issue=4&rft.spage=367&rft.pages=367-&rft.issn=0282-423X&rft.eissn=2001-7367&rft_id=info:doi/&rft_dat=%3Cproquest_fao_a%3E2858992441%3C/proquest_fao_a%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266843929&rft_id=info:pmid/&rfr_iscdi=true |