Review of Turbulent Boundary Layer Models for Acoustic Analysis

A survey of the available turbulent boundary-layer models for acoustic analysis is presented. The empirical mean-square pressure models predict a relatively large spread in the values: bounded on the high end by the Kraichnan model and on the low end by the Bull model and the Willmarth and Wooldridg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2012-11, Vol.49 (6), p.1739-1754
Hauptverfasser: Miller, Teresa S, Gallman, Judith M, Moeller, Mark J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1754
container_issue 6
container_start_page 1739
container_title Journal of aircraft
container_volume 49
creator Miller, Teresa S
Gallman, Judith M
Moeller, Mark J
description A survey of the available turbulent boundary-layer models for acoustic analysis is presented. The empirical mean-square pressure models predict a relatively large spread in the values: bounded on the high end by the Kraichnan model and on the low end by the Bull model and the Willmarth and Wooldridge model. It is difficult to select a preferred model based on data from the Spirit model 6 x 6 in. duct. The single-point wall-pressure spectrum models are evaluated, and the two more modern Smol'yakov and Goody models seem to perform the best. The single-point wall-pressure spectrums from the Spirit model 6 x 6 in. data at low frequencies roll off similar to the Goody model, indicating that it is the preferred model for aircraft applications. Important features of the normalized wavenumber-frequency spectrum models are presented. Separable models in the Corcos model class tend to overpredict the response for a range of cases. The nonseparable Chase 1 and Smol'yakov-Tkachenko models match the Massachusetts Institute of Technology low-noise low-turbulence wind-tunnel data throughout the range of comparison. The Chase 1 model can be converted from the wavenumber-frequency spectrum to the cross spectrum, so it is the preferred model for aircraft applications. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.C031405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1264899315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315605915</sourcerecordid><originalsourceid>FETCH-LOGICAL-a384t-235d596caef21655a056d96d7a723d97e11e4d4b175a36c33d2f96593bdc2b913</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pwf8gIIoeOvOSJmlOMoe_YCLIPJfXJIWOrp3Jquy_t7ohogdPuXzyfe99CTkGNuIS0ksYTZiAlMkdMgApRCIyle2SAWMckkwps08OYpwzxjKm9YBcPfu3yr_TtqSzLhRd7ZsVvW67xmFY0ymufaCPrfN1pGUb6Ni2XVxVlo4brNexiodkr8Q6-qPtOyQvtzezyX0yfbp7mIynCYosXSVcSCeNsuhLDkpKZFI5o5xGzYUz2gP41KUFaIlCWSEcL42SRhTO8sKAGJLzTe4ytK-dj6t8UUXr6xob36-UQwpcMqGl_p8KkIpJ09czJCe_6LztQn9ar7hKM2PEl7rYKBvaGIMv82WoFn0_ObD8s_Uc8m3rvT3dJmK0WJcBG1vF7w9cacOMVr072zisEH9M_RP4AT-ViZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1264899315</pqid></control><display><type>article</type><title>Review of Turbulent Boundary Layer Models for Acoustic Analysis</title><source>Alma/SFX Local Collection</source><creator>Miller, Teresa S ; Gallman, Judith M ; Moeller, Mark J</creator><creatorcontrib>Miller, Teresa S ; Gallman, Judith M ; Moeller, Mark J</creatorcontrib><description>A survey of the available turbulent boundary-layer models for acoustic analysis is presented. The empirical mean-square pressure models predict a relatively large spread in the values: bounded on the high end by the Kraichnan model and on the low end by the Bull model and the Willmarth and Wooldridge model. It is difficult to select a preferred model based on data from the Spirit model 6 x 6 in. duct. The single-point wall-pressure spectrum models are evaluated, and the two more modern Smol'yakov and Goody models seem to perform the best. The single-point wall-pressure spectrums from the Spirit model 6 x 6 in. data at low frequencies roll off similar to the Goody model, indicating that it is the preferred model for aircraft applications. Important features of the normalized wavenumber-frequency spectrum models are presented. Separable models in the Corcos model class tend to overpredict the response for a range of cases. The nonseparable Chase 1 and Smol'yakov-Tkachenko models match the Massachusetts Institute of Technology low-noise low-turbulence wind-tunnel data throughout the range of comparison. The Chase 1 model can be converted from the wavenumber-frequency spectrum to the cross spectrum, so it is the preferred model for aircraft applications. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C031405</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Aircraft ; Boundary layer ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Noise: its effects and control ; Physics ; Pressure ; Turbulence ; Wind tunnels</subject><ispartof>Journal of aircraft, 2012-11, Vol.49 (6), p.1739-1754</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a384t-235d596caef21655a056d96d7a723d97e11e4d4b175a36c33d2f96593bdc2b913</citedby><cites>FETCH-LOGICAL-a384t-235d596caef21655a056d96d7a723d97e11e4d4b175a36c33d2f96593bdc2b913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26790976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Teresa S</creatorcontrib><creatorcontrib>Gallman, Judith M</creatorcontrib><creatorcontrib>Moeller, Mark J</creatorcontrib><title>Review of Turbulent Boundary Layer Models for Acoustic Analysis</title><title>Journal of aircraft</title><description>A survey of the available turbulent boundary-layer models for acoustic analysis is presented. The empirical mean-square pressure models predict a relatively large spread in the values: bounded on the high end by the Kraichnan model and on the low end by the Bull model and the Willmarth and Wooldridge model. It is difficult to select a preferred model based on data from the Spirit model 6 x 6 in. duct. The single-point wall-pressure spectrum models are evaluated, and the two more modern Smol'yakov and Goody models seem to perform the best. The single-point wall-pressure spectrums from the Spirit model 6 x 6 in. data at low frequencies roll off similar to the Goody model, indicating that it is the preferred model for aircraft applications. Important features of the normalized wavenumber-frequency spectrum models are presented. Separable models in the Corcos model class tend to overpredict the response for a range of cases. The nonseparable Chase 1 and Smol'yakov-Tkachenko models match the Massachusetts Institute of Technology low-noise low-turbulence wind-tunnel data throughout the range of comparison. The Chase 1 model can be converted from the wavenumber-frequency spectrum to the cross spectrum, so it is the preferred model for aircraft applications. [PUBLICATION ABSTRACT]</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aircraft</subject><subject>Boundary layer</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Noise: its effects and control</subject><subject>Physics</subject><subject>Pressure</subject><subject>Turbulence</subject><subject>Wind tunnels</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs7pwf8gIIoeOvOSJmlOMoe_YCLIPJfXJIWOrp3Jquy_t7ohogdPuXzyfe99CTkGNuIS0ksYTZiAlMkdMgApRCIyle2SAWMckkwps08OYpwzxjKm9YBcPfu3yr_TtqSzLhRd7ZsVvW67xmFY0ymufaCPrfN1pGUb6Ni2XVxVlo4brNexiodkr8Q6-qPtOyQvtzezyX0yfbp7mIynCYosXSVcSCeNsuhLDkpKZFI5o5xGzYUz2gP41KUFaIlCWSEcL42SRhTO8sKAGJLzTe4ytK-dj6t8UUXr6xob36-UQwpcMqGl_p8KkIpJ09czJCe_6LztQn9ar7hKM2PEl7rYKBvaGIMv82WoFn0_ObD8s_Uc8m3rvT3dJmK0WJcBG1vF7w9cacOMVr072zisEH9M_RP4AT-ViZc</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Miller, Teresa S</creator><creator>Gallman, Judith M</creator><creator>Moeller, Mark J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20121101</creationdate><title>Review of Turbulent Boundary Layer Models for Acoustic Analysis</title><author>Miller, Teresa S ; Gallman, Judith M ; Moeller, Mark J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a384t-235d596caef21655a056d96d7a723d97e11e4d4b175a36c33d2f96593bdc2b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aircraft</topic><topic>Boundary layer</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Noise: its effects and control</topic><topic>Physics</topic><topic>Pressure</topic><topic>Turbulence</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Teresa S</creatorcontrib><creatorcontrib>Gallman, Judith M</creatorcontrib><creatorcontrib>Moeller, Mark J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Teresa S</au><au>Gallman, Judith M</au><au>Moeller, Mark J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Turbulent Boundary Layer Models for Acoustic Analysis</atitle><jtitle>Journal of aircraft</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>49</volume><issue>6</issue><spage>1739</spage><epage>1754</epage><pages>1739-1754</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>A survey of the available turbulent boundary-layer models for acoustic analysis is presented. The empirical mean-square pressure models predict a relatively large spread in the values: bounded on the high end by the Kraichnan model and on the low end by the Bull model and the Willmarth and Wooldridge model. It is difficult to select a preferred model based on data from the Spirit model 6 x 6 in. duct. The single-point wall-pressure spectrum models are evaluated, and the two more modern Smol'yakov and Goody models seem to perform the best. The single-point wall-pressure spectrums from the Spirit model 6 x 6 in. data at low frequencies roll off similar to the Goody model, indicating that it is the preferred model for aircraft applications. Important features of the normalized wavenumber-frequency spectrum models are presented. Separable models in the Corcos model class tend to overpredict the response for a range of cases. The nonseparable Chase 1 and Smol'yakov-Tkachenko models match the Massachusetts Institute of Technology low-noise low-turbulence wind-tunnel data throughout the range of comparison. The Chase 1 model can be converted from the wavenumber-frequency spectrum to the cross spectrum, so it is the preferred model for aircraft applications. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C031405</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2012-11, Vol.49 (6), p.1739-1754
issn 0021-8669
1533-3868
language eng
recordid cdi_proquest_journals_1264899315
source Alma/SFX Local Collection
subjects Acoustics
Aeroacoustics, atmospheric sound
Aircraft
Boundary layer
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Noise: its effects and control
Physics
Pressure
Turbulence
Wind tunnels
title Review of Turbulent Boundary Layer Models for Acoustic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Turbulent%20Boundary%20Layer%20Models%20for%20Acoustic%20Analysis&rft.jtitle=Journal%20of%20aircraft&rft.au=Miller,%20Teresa%20S&rft.date=2012-11-01&rft.volume=49&rft.issue=6&rft.spage=1739&rft.epage=1754&rft.pages=1739-1754&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.C031405&rft_dat=%3Cproquest_cross%3E1315605915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1264899315&rft_id=info:pmid/&rfr_iscdi=true