Single-particle structure determination by correlations of snapshot X-ray diffraction patterns
Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damag...
Gespeichert in:
Veröffentlicht in: | Nature communications 2012-12, Vol.3 (1), p.1276 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1276 |
container_title | Nature communications |
container_volume | 3 |
creator | Starodub, D. Aquila, A. Bajt, S. Barthelmess, M. Barty, A. Bostedt, C. Bozek, J.D. Coppola, N. Doak, R.B. Epp, S.W. Erk, B. Foucar, L. Gumprecht, L. Hampton, C.Y. Hartmann, A. Hartmann, R. Holl, P. Kassemeyer, S. Kimmel, N. Laksmono, H. Liang, M. Loh, N.D. Lomb, L. Martin, A.V. Nass, K. Reich, C. Rolles, D. Rudek, B. Rudenko, A. Schulz, J. Shoeman, R.L. Sierra, R.G. Soltau, H. Steinbrener, J. Stellato, F. Stern, S. Weidenspointner, G. Frank, M. Ullrich, J. Strüder, L. Schlichting, I. Chapman, H.N. Spence, J.C.H. Bogan, M.J. |
description | Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.
Free-electron lasers enable diffractive imaging of single nanostructures, but algorithms, such as correlation analyses, are needed to determine their diffraction volume from accumulated data. Starodub
et al.
present such a method for X-ray diffractive imaging of nanometre-scale polystyrene dimers. |
doi_str_mv | 10.1038/ncomms2288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_1247485225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851665351</sourcerecordid><originalsourceid>FETCH-LOGICAL-p172t-2e2b92003a4dd20866dab4a845ee48d3bc2fec16468210891a66fbd4fa08a4ba3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMgttRefAAJeJTVJJtu06MUrULBgwqeXCabSd2ym12T7KFvb2wrOnMYhvnmn-En5IKzG85ydeuqrm2DEEqdkLFgkmd8LvIRmYawZSnyBVdSnpGRyFNKVozJx0vtNg1mPfhYVw3SEP1QxcEjNRjRt7WDWHeO6h2tOu-x2beBdpYGB3347CJ9zzzsqKmt9VDt6R5iWnbhnJxaaAJOj3VC3h7uX5eP2fp59bS8W2d9-jBmAoVeiPQgSGMEU0VhQEtQcoYolcl1JSxWvJCFEpypBYeisNpIC0yB1JBPyNVBt_fd14Ahlttu8C6dLLmQc6lmQswSdXmkBt2iKXtft-B35a8dCbg-ACGN3Ab9PxlW_nhc_nmcfwN1SnD7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1247485225</pqid></control><display><type>article</type><title>Single-particle structure determination by correlations of snapshot X-ray diffraction patterns</title><source>Springer Nature OA Free Journals</source><creator>Starodub, D. ; Aquila, A. ; Bajt, S. ; Barthelmess, M. ; Barty, A. ; Bostedt, C. ; Bozek, J.D. ; Coppola, N. ; Doak, R.B. ; Epp, S.W. ; Erk, B. ; Foucar, L. ; Gumprecht, L. ; Hampton, C.Y. ; Hartmann, A. ; Hartmann, R. ; Holl, P. ; Kassemeyer, S. ; Kimmel, N. ; Laksmono, H. ; Liang, M. ; Loh, N.D. ; Lomb, L. ; Martin, A.V. ; Nass, K. ; Reich, C. ; Rolles, D. ; Rudek, B. ; Rudenko, A. ; Schulz, J. ; Shoeman, R.L. ; Sierra, R.G. ; Soltau, H. ; Steinbrener, J. ; Stellato, F. ; Stern, S. ; Weidenspointner, G. ; Frank, M. ; Ullrich, J. ; Strüder, L. ; Schlichting, I. ; Chapman, H.N. ; Spence, J.C.H. ; Bogan, M.J.</creator><creatorcontrib>Starodub, D. ; Aquila, A. ; Bajt, S. ; Barthelmess, M. ; Barty, A. ; Bostedt, C. ; Bozek, J.D. ; Coppola, N. ; Doak, R.B. ; Epp, S.W. ; Erk, B. ; Foucar, L. ; Gumprecht, L. ; Hampton, C.Y. ; Hartmann, A. ; Hartmann, R. ; Holl, P. ; Kassemeyer, S. ; Kimmel, N. ; Laksmono, H. ; Liang, M. ; Loh, N.D. ; Lomb, L. ; Martin, A.V. ; Nass, K. ; Reich, C. ; Rolles, D. ; Rudek, B. ; Rudenko, A. ; Schulz, J. ; Shoeman, R.L. ; Sierra, R.G. ; Soltau, H. ; Steinbrener, J. ; Stellato, F. ; Stern, S. ; Weidenspointner, G. ; Frank, M. ; Ullrich, J. ; Strüder, L. ; Schlichting, I. ; Chapman, H.N. ; Spence, J.C.H. ; Bogan, M.J.</creatorcontrib><description>Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.
Free-electron lasers enable diffractive imaging of single nanostructures, but algorithms, such as correlation analyses, are needed to determine their diffraction volume from accumulated data. Starodub
et al.
present such a method for X-ray diffractive imaging of nanometre-scale polystyrene dimers.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2288</identifier><identifier>PMID: 23232406</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2258 ; 639/301/1019/1020/1087 ; 639/638/11/879 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012-12, Vol.3 (1), p.1276</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p172t-2e2b92003a4dd20866dab4a845ee48d3bc2fec16468210891a66fbd4fa08a4ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms2288$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms2288$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms2288$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23232406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starodub, D.</creatorcontrib><creatorcontrib>Aquila, A.</creatorcontrib><creatorcontrib>Bajt, S.</creatorcontrib><creatorcontrib>Barthelmess, M.</creatorcontrib><creatorcontrib>Barty, A.</creatorcontrib><creatorcontrib>Bostedt, C.</creatorcontrib><creatorcontrib>Bozek, J.D.</creatorcontrib><creatorcontrib>Coppola, N.</creatorcontrib><creatorcontrib>Doak, R.B.</creatorcontrib><creatorcontrib>Epp, S.W.</creatorcontrib><creatorcontrib>Erk, B.</creatorcontrib><creatorcontrib>Foucar, L.</creatorcontrib><creatorcontrib>Gumprecht, L.</creatorcontrib><creatorcontrib>Hampton, C.Y.</creatorcontrib><creatorcontrib>Hartmann, A.</creatorcontrib><creatorcontrib>Hartmann, R.</creatorcontrib><creatorcontrib>Holl, P.</creatorcontrib><creatorcontrib>Kassemeyer, S.</creatorcontrib><creatorcontrib>Kimmel, N.</creatorcontrib><creatorcontrib>Laksmono, H.</creatorcontrib><creatorcontrib>Liang, M.</creatorcontrib><creatorcontrib>Loh, N.D.</creatorcontrib><creatorcontrib>Lomb, L.</creatorcontrib><creatorcontrib>Martin, A.V.</creatorcontrib><creatorcontrib>Nass, K.</creatorcontrib><creatorcontrib>Reich, C.</creatorcontrib><creatorcontrib>Rolles, D.</creatorcontrib><creatorcontrib>Rudek, B.</creatorcontrib><creatorcontrib>Rudenko, A.</creatorcontrib><creatorcontrib>Schulz, J.</creatorcontrib><creatorcontrib>Shoeman, R.L.</creatorcontrib><creatorcontrib>Sierra, R.G.</creatorcontrib><creatorcontrib>Soltau, H.</creatorcontrib><creatorcontrib>Steinbrener, J.</creatorcontrib><creatorcontrib>Stellato, F.</creatorcontrib><creatorcontrib>Stern, S.</creatorcontrib><creatorcontrib>Weidenspointner, G.</creatorcontrib><creatorcontrib>Frank, M.</creatorcontrib><creatorcontrib>Ullrich, J.</creatorcontrib><creatorcontrib>Strüder, L.</creatorcontrib><creatorcontrib>Schlichting, I.</creatorcontrib><creatorcontrib>Chapman, H.N.</creatorcontrib><creatorcontrib>Spence, J.C.H.</creatorcontrib><creatorcontrib>Bogan, M.J.</creatorcontrib><title>Single-particle structure determination by correlations of snapshot X-ray diffraction patterns</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.
Free-electron lasers enable diffractive imaging of single nanostructures, but algorithms, such as correlation analyses, are needed to determine their diffraction volume from accumulated data. Starodub
et al.
present such a method for X-ray diffractive imaging of nanometre-scale polystyrene dimers.</description><subject>631/1647/2258</subject><subject>639/301/1019/1020/1087</subject><subject>639/638/11/879</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkMFKAzEQhoMgttRefAAJeJTVJJtu06MUrULBgwqeXCabSd2ym12T7KFvb2wrOnMYhvnmn-En5IKzG85ydeuqrm2DEEqdkLFgkmd8LvIRmYawZSnyBVdSnpGRyFNKVozJx0vtNg1mPfhYVw3SEP1QxcEjNRjRt7WDWHeO6h2tOu-x2beBdpYGB3347CJ9zzzsqKmt9VDt6R5iWnbhnJxaaAJOj3VC3h7uX5eP2fp59bS8W2d9-jBmAoVeiPQgSGMEU0VhQEtQcoYolcl1JSxWvJCFEpypBYeisNpIC0yB1JBPyNVBt_fd14Ahlttu8C6dLLmQc6lmQswSdXmkBt2iKXtft-B35a8dCbg-ACGN3Ab9PxlW_nhc_nmcfwN1SnD7</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Starodub, D.</creator><creator>Aquila, A.</creator><creator>Bajt, S.</creator><creator>Barthelmess, M.</creator><creator>Barty, A.</creator><creator>Bostedt, C.</creator><creator>Bozek, J.D.</creator><creator>Coppola, N.</creator><creator>Doak, R.B.</creator><creator>Epp, S.W.</creator><creator>Erk, B.</creator><creator>Foucar, L.</creator><creator>Gumprecht, L.</creator><creator>Hampton, C.Y.</creator><creator>Hartmann, A.</creator><creator>Hartmann, R.</creator><creator>Holl, P.</creator><creator>Kassemeyer, S.</creator><creator>Kimmel, N.</creator><creator>Laksmono, H.</creator><creator>Liang, M.</creator><creator>Loh, N.D.</creator><creator>Lomb, L.</creator><creator>Martin, A.V.</creator><creator>Nass, K.</creator><creator>Reich, C.</creator><creator>Rolles, D.</creator><creator>Rudek, B.</creator><creator>Rudenko, A.</creator><creator>Schulz, J.</creator><creator>Shoeman, R.L.</creator><creator>Sierra, R.G.</creator><creator>Soltau, H.</creator><creator>Steinbrener, J.</creator><creator>Stellato, F.</creator><creator>Stern, S.</creator><creator>Weidenspointner, G.</creator><creator>Frank, M.</creator><creator>Ullrich, J.</creator><creator>Strüder, L.</creator><creator>Schlichting, I.</creator><creator>Chapman, H.N.</creator><creator>Spence, J.C.H.</creator><creator>Bogan, M.J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20121201</creationdate><title>Single-particle structure determination by correlations of snapshot X-ray diffraction patterns</title><author>Starodub, D. ; Aquila, A. ; Bajt, S. ; Barthelmess, M. ; Barty, A. ; Bostedt, C. ; Bozek, J.D. ; Coppola, N. ; Doak, R.B. ; Epp, S.W. ; Erk, B. ; Foucar, L. ; Gumprecht, L. ; Hampton, C.Y. ; Hartmann, A. ; Hartmann, R. ; Holl, P. ; Kassemeyer, S. ; Kimmel, N. ; Laksmono, H. ; Liang, M. ; Loh, N.D. ; Lomb, L. ; Martin, A.V. ; Nass, K. ; Reich, C. ; Rolles, D. ; Rudek, B. ; Rudenko, A. ; Schulz, J. ; Shoeman, R.L. ; Sierra, R.G. ; Soltau, H. ; Steinbrener, J. ; Stellato, F. ; Stern, S. ; Weidenspointner, G. ; Frank, M. ; Ullrich, J. ; Strüder, L. ; Schlichting, I. ; Chapman, H.N. ; Spence, J.C.H. ; Bogan, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p172t-2e2b92003a4dd20866dab4a845ee48d3bc2fec16468210891a66fbd4fa08a4ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/1647/2258</topic><topic>639/301/1019/1020/1087</topic><topic>639/638/11/879</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starodub, D.</creatorcontrib><creatorcontrib>Aquila, A.</creatorcontrib><creatorcontrib>Bajt, S.</creatorcontrib><creatorcontrib>Barthelmess, M.</creatorcontrib><creatorcontrib>Barty, A.</creatorcontrib><creatorcontrib>Bostedt, C.</creatorcontrib><creatorcontrib>Bozek, J.D.</creatorcontrib><creatorcontrib>Coppola, N.</creatorcontrib><creatorcontrib>Doak, R.B.</creatorcontrib><creatorcontrib>Epp, S.W.</creatorcontrib><creatorcontrib>Erk, B.</creatorcontrib><creatorcontrib>Foucar, L.</creatorcontrib><creatorcontrib>Gumprecht, L.</creatorcontrib><creatorcontrib>Hampton, C.Y.</creatorcontrib><creatorcontrib>Hartmann, A.</creatorcontrib><creatorcontrib>Hartmann, R.</creatorcontrib><creatorcontrib>Holl, P.</creatorcontrib><creatorcontrib>Kassemeyer, S.</creatorcontrib><creatorcontrib>Kimmel, N.</creatorcontrib><creatorcontrib>Laksmono, H.</creatorcontrib><creatorcontrib>Liang, M.</creatorcontrib><creatorcontrib>Loh, N.D.</creatorcontrib><creatorcontrib>Lomb, L.</creatorcontrib><creatorcontrib>Martin, A.V.</creatorcontrib><creatorcontrib>Nass, K.</creatorcontrib><creatorcontrib>Reich, C.</creatorcontrib><creatorcontrib>Rolles, D.</creatorcontrib><creatorcontrib>Rudek, B.</creatorcontrib><creatorcontrib>Rudenko, A.</creatorcontrib><creatorcontrib>Schulz, J.</creatorcontrib><creatorcontrib>Shoeman, R.L.</creatorcontrib><creatorcontrib>Sierra, R.G.</creatorcontrib><creatorcontrib>Soltau, H.</creatorcontrib><creatorcontrib>Steinbrener, J.</creatorcontrib><creatorcontrib>Stellato, F.</creatorcontrib><creatorcontrib>Stern, S.</creatorcontrib><creatorcontrib>Weidenspointner, G.</creatorcontrib><creatorcontrib>Frank, M.</creatorcontrib><creatorcontrib>Ullrich, J.</creatorcontrib><creatorcontrib>Strüder, L.</creatorcontrib><creatorcontrib>Schlichting, I.</creatorcontrib><creatorcontrib>Chapman, H.N.</creatorcontrib><creatorcontrib>Spence, J.C.H.</creatorcontrib><creatorcontrib>Bogan, M.J.</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Starodub, D.</au><au>Aquila, A.</au><au>Bajt, S.</au><au>Barthelmess, M.</au><au>Barty, A.</au><au>Bostedt, C.</au><au>Bozek, J.D.</au><au>Coppola, N.</au><au>Doak, R.B.</au><au>Epp, S.W.</au><au>Erk, B.</au><au>Foucar, L.</au><au>Gumprecht, L.</au><au>Hampton, C.Y.</au><au>Hartmann, A.</au><au>Hartmann, R.</au><au>Holl, P.</au><au>Kassemeyer, S.</au><au>Kimmel, N.</au><au>Laksmono, H.</au><au>Liang, M.</au><au>Loh, N.D.</au><au>Lomb, L.</au><au>Martin, A.V.</au><au>Nass, K.</au><au>Reich, C.</au><au>Rolles, D.</au><au>Rudek, B.</au><au>Rudenko, A.</au><au>Schulz, J.</au><au>Shoeman, R.L.</au><au>Sierra, R.G.</au><au>Soltau, H.</au><au>Steinbrener, J.</au><au>Stellato, F.</au><au>Stern, S.</au><au>Weidenspointner, G.</au><au>Frank, M.</au><au>Ullrich, J.</au><au>Strüder, L.</au><au>Schlichting, I.</au><au>Chapman, H.N.</au><au>Spence, J.C.H.</au><au>Bogan, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-particle structure determination by correlations of snapshot X-ray diffraction patterns</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>1276</spage><pages>1276-</pages><eissn>2041-1723</eissn><abstract>Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.
Free-electron lasers enable diffractive imaging of single nanostructures, but algorithms, such as correlation analyses, are needed to determine their diffraction volume from accumulated data. Starodub
et al.
present such a method for X-ray diffractive imaging of nanometre-scale polystyrene dimers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23232406</pmid><doi>10.1038/ncomms2288</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2012-12, Vol.3 (1), p.1276 |
issn | 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_1247485225 |
source | Springer Nature OA Free Journals |
subjects | 631/1647/2258 639/301/1019/1020/1087 639/638/11/879 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Single-particle structure determination by correlations of snapshot X-ray diffraction patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-particle%20structure%20determination%20by%20correlations%20of%20snapshot%20X-ray%20diffraction%20patterns&rft.jtitle=Nature%20communications&rft.au=Starodub,%20D.&rft.date=2012-12-01&rft.volume=3&rft.issue=1&rft.spage=1276&rft.pages=1276-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2288&rft_dat=%3Cproquest_C6C%3E2851665351%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1247485225&rft_id=info:pmid/23232406&rfr_iscdi=true |