Feature Combiners With Gate-Generated Weights for Classification
Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of th...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2013-01, Vol.24 (1), p.158-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 1 |
container_start_page | 158 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 24 |
creator | Omari, A. Figueiras-Vidal, A. R. |
description | Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs. |
doi_str_mv | 10.1109/TNNLS.2012.2223232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1243334587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6365375</ieee_id><sourcerecordid>1523404388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWqp_QEEWRPCyNd_J3pRiq1DqQUVvSzY7q5Htbk12D_57U1sreDE5ZJg88w4zL0LHBI8Iwdnl43w-exhRTOiIUsri3UEDSiRNKdN6dxurlwN0FMI7jkdiIXm2jw4o11hTIgboagKm6z0k43ZRuAZ8SJ5d95ZMTQfpFGIiBmXyDO71rQtJ1fpkXJsQXOWs6VzbHKK9ytQBjjbvED1Nbh7Ht-nsfno3vp6llhPepZlWtqqUzYguy0zbkjCGFQhd2EKIjEDBOJFMCklBKIGNkhVnkhaKl1xhzoboYq279O1HD6HLFy5YqGvTQNuHnAjKeOS0_h-lOjbCVK1Uz_6g723vmzhIpDhjjAutIkXXlPVtCB6qfOndwvjPnOB85Ub-7Ua-ciPfuBGLTjfSfbGAclvys_sInG8AE6ypK28a68Ivp7BSXJLInaw5BwDb79WumBLsC_uUl30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1243334587</pqid></control><display><type>article</type><title>Feature Combiners With Gate-Generated Weights for Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Omari, A. ; Figueiras-Vidal, A. R.</creator><creatorcontrib>Omari, A. ; Figueiras-Vidal, A. R.</creatorcontrib><description>Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2223232</identifier><identifier>PMID: 24808215</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Architecture ; Classification ; Computer architecture ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Demand ; Exact sciences and technology ; Functional weights ; gate fusion ; Gates ; Learning systems ; Logic gates ; maximal margin ; Member and Geographic Activities Board committees ; Memory organisation. Data processing ; Neural networks ; Software ; Studies ; Support vector machines ; Training ; Transformations</subject><ispartof>IEEE transaction on neural networks and learning systems, 2013-01, Vol.24 (1), p.158-163</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</citedby><cites>FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6365375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6365375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27077461$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24808215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Omari, A.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><title>Feature Combiners With Gate-Generated Weights for Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Demand</subject><subject>Exact sciences and technology</subject><subject>Functional weights</subject><subject>gate fusion</subject><subject>Gates</subject><subject>Learning systems</subject><subject>Logic gates</subject><subject>maximal margin</subject><subject>Member and Geographic Activities Board committees</subject><subject>Memory organisation. Data processing</subject><subject>Neural networks</subject><subject>Software</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Transformations</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LAzEQhoMoWqp_QEEWRPCyNd_J3pRiq1DqQUVvSzY7q5Htbk12D_57U1sreDE5ZJg88w4zL0LHBI8Iwdnl43w-exhRTOiIUsri3UEDSiRNKdN6dxurlwN0FMI7jkdiIXm2jw4o11hTIgboagKm6z0k43ZRuAZ8SJ5d95ZMTQfpFGIiBmXyDO71rQtJ1fpkXJsQXOWs6VzbHKK9ytQBjjbvED1Nbh7Ht-nsfno3vp6llhPepZlWtqqUzYguy0zbkjCGFQhd2EKIjEDBOJFMCklBKIGNkhVnkhaKl1xhzoboYq279O1HD6HLFy5YqGvTQNuHnAjKeOS0_h-lOjbCVK1Uz_6g723vmzhIpDhjjAutIkXXlPVtCB6qfOndwvjPnOB85Ub-7Ua-ciPfuBGLTjfSfbGAclvys_sInG8AE6ypK28a68Ivp7BSXJLInaw5BwDb79WumBLsC_uUl30</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Omari, A.</creator><creator>Figueiras-Vidal, A. R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>Feature Combiners With Gate-Generated Weights for Classification</title><author>Omari, A. ; Figueiras-Vidal, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Demand</topic><topic>Exact sciences and technology</topic><topic>Functional weights</topic><topic>gate fusion</topic><topic>Gates</topic><topic>Learning systems</topic><topic>Logic gates</topic><topic>maximal margin</topic><topic>Member and Geographic Activities Board committees</topic><topic>Memory organisation. Data processing</topic><topic>Neural networks</topic><topic>Software</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Omari, A.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Omari, A.</au><au>Figueiras-Vidal, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Combiners With Gate-Generated Weights for Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2013-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>158</spage><epage>163</epage><pages>158-163</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24808215</pmid><doi>10.1109/TNNLS.2012.2223232</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2013-01, Vol.24 (1), p.158-163 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_1243334587 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Architecture Classification Computer architecture Computer science control theory systems Data processing. List processing. Character string processing Demand Exact sciences and technology Functional weights gate fusion Gates Learning systems Logic gates maximal margin Member and Geographic Activities Board committees Memory organisation. Data processing Neural networks Software Studies Support vector machines Training Transformations |
title | Feature Combiners With Gate-Generated Weights for Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Combiners%20With%20Gate-Generated%20Weights%20for%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Omari,%20A.&rft.date=2013-01&rft.volume=24&rft.issue=1&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2223232&rft_dat=%3Cproquest_RIE%3E1523404388%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1243334587&rft_id=info:pmid/24808215&rft_ieee_id=6365375&rfr_iscdi=true |