Feature Combiners With Gate-Generated Weights for Classification

Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2013-01, Vol.24 (1), p.158-163
Hauptverfasser: Omari, A., Figueiras-Vidal, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 158
container_title IEEE transaction on neural networks and learning systems
container_volume 24
creator Omari, A.
Figueiras-Vidal, A. R.
description Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.
doi_str_mv 10.1109/TNNLS.2012.2223232
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1243334587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6365375</ieee_id><sourcerecordid>1523404388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWqp_QEEWRPCyNd_J3pRiq1DqQUVvSzY7q5Htbk12D_57U1sreDE5ZJg88w4zL0LHBI8Iwdnl43w-exhRTOiIUsri3UEDSiRNKdN6dxurlwN0FMI7jkdiIXm2jw4o11hTIgboagKm6z0k43ZRuAZ8SJ5d95ZMTQfpFGIiBmXyDO71rQtJ1fpkXJsQXOWs6VzbHKK9ytQBjjbvED1Nbh7Ht-nsfno3vp6llhPepZlWtqqUzYguy0zbkjCGFQhd2EKIjEDBOJFMCklBKIGNkhVnkhaKl1xhzoboYq279O1HD6HLFy5YqGvTQNuHnAjKeOS0_h-lOjbCVK1Uz_6g723vmzhIpDhjjAutIkXXlPVtCB6qfOndwvjPnOB85Ub-7Ua-ciPfuBGLTjfSfbGAclvys_sInG8AE6ypK28a68Ivp7BSXJLInaw5BwDb79WumBLsC_uUl30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1243334587</pqid></control><display><type>article</type><title>Feature Combiners With Gate-Generated Weights for Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Omari, A. ; Figueiras-Vidal, A. R.</creator><creatorcontrib>Omari, A. ; Figueiras-Vidal, A. R.</creatorcontrib><description>Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2223232</identifier><identifier>PMID: 24808215</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Architecture ; Classification ; Computer architecture ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Demand ; Exact sciences and technology ; Functional weights ; gate fusion ; Gates ; Learning systems ; Logic gates ; maximal margin ; Member and Geographic Activities Board committees ; Memory organisation. Data processing ; Neural networks ; Software ; Studies ; Support vector machines ; Training ; Transformations</subject><ispartof>IEEE transaction on neural networks and learning systems, 2013-01, Vol.24 (1), p.158-163</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</citedby><cites>FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6365375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6365375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27077461$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24808215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Omari, A.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><title>Feature Combiners With Gate-Generated Weights for Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Demand</subject><subject>Exact sciences and technology</subject><subject>Functional weights</subject><subject>gate fusion</subject><subject>Gates</subject><subject>Learning systems</subject><subject>Logic gates</subject><subject>maximal margin</subject><subject>Member and Geographic Activities Board committees</subject><subject>Memory organisation. Data processing</subject><subject>Neural networks</subject><subject>Software</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Transformations</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LAzEQhoMoWqp_QEEWRPCyNd_J3pRiq1DqQUVvSzY7q5Htbk12D_57U1sreDE5ZJg88w4zL0LHBI8Iwdnl43w-exhRTOiIUsri3UEDSiRNKdN6dxurlwN0FMI7jkdiIXm2jw4o11hTIgboagKm6z0k43ZRuAZ8SJ5d95ZMTQfpFGIiBmXyDO71rQtJ1fpkXJsQXOWs6VzbHKK9ytQBjjbvED1Nbh7Ht-nsfno3vp6llhPepZlWtqqUzYguy0zbkjCGFQhd2EKIjEDBOJFMCklBKIGNkhVnkhaKl1xhzoboYq279O1HD6HLFy5YqGvTQNuHnAjKeOS0_h-lOjbCVK1Uz_6g723vmzhIpDhjjAutIkXXlPVtCB6qfOndwvjPnOB85Ub-7Ua-ciPfuBGLTjfSfbGAclvys_sInG8AE6ypK28a68Ivp7BSXJLInaw5BwDb79WumBLsC_uUl30</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Omari, A.</creator><creator>Figueiras-Vidal, A. R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>Feature Combiners With Gate-Generated Weights for Classification</title><author>Omari, A. ; Figueiras-Vidal, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-987cff7c918dd98cd13307e58bcb5591eb341636562e5750a76f4362b74d47043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Demand</topic><topic>Exact sciences and technology</topic><topic>Functional weights</topic><topic>gate fusion</topic><topic>Gates</topic><topic>Learning systems</topic><topic>Logic gates</topic><topic>maximal margin</topic><topic>Member and Geographic Activities Board committees</topic><topic>Memory organisation. Data processing</topic><topic>Neural networks</topic><topic>Software</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Omari, A.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Omari, A.</au><au>Figueiras-Vidal, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Combiners With Gate-Generated Weights for Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2013-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>158</spage><epage>163</epage><pages>158-163</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Using functional weights in a conventional linear combination architecture is a way of obtaining expressive power and represents an alternative to classical trainable and implicit nonlinear transformations. In this brief, we explore this way of constructing binary classifiers, taking advantage of the possibility of generating functional weights by means of a gate with fixed radial basis functions. This particular form of the gate permits training the machine directly with maximal margin algorithms. We call the resulting scheme "feature combiners with gate generated weights for classification." Experimental results show that these architectures outperform support vector machines (SVMs) and Real AdaBoost ensembles in most considered benchmark examples. An increase in the computational design effort due to cross-validation demands is the price to be paid to obtain this advantage. Nevertheless, the operational effort is usually lower than that needed by SVMs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24808215</pmid><doi>10.1109/TNNLS.2012.2223232</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2013-01, Vol.24 (1), p.158-163
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_1243334587
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Architecture
Classification
Computer architecture
Computer science
control theory
systems
Data processing. List processing. Character string processing
Demand
Exact sciences and technology
Functional weights
gate fusion
Gates
Learning systems
Logic gates
maximal margin
Member and Geographic Activities Board committees
Memory organisation. Data processing
Neural networks
Software
Studies
Support vector machines
Training
Transformations
title Feature Combiners With Gate-Generated Weights for Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Combiners%20With%20Gate-Generated%20Weights%20for%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Omari,%20A.&rft.date=2013-01&rft.volume=24&rft.issue=1&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2223232&rft_dat=%3Cproquest_RIE%3E1523404388%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1243334587&rft_id=info:pmid/24808215&rft_ieee_id=6365375&rfr_iscdi=true