Within-River Phosphorus Retention: Accounting for a Missing Piece in the Watershed Phosphorus Puzzle
The prevailing “puzzle” in watershed phosphorus (P) management is how to account for the nonconservative behavior (retention and remobilization) of P along the land-freshwater continuum. This often hinders our attempts to directly link watershed P sources with their water quality impacts. Here, we e...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2012-12, Vol.46 (24), p.13284-13292 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prevailing “puzzle” in watershed phosphorus (P) management is how to account for the nonconservative behavior (retention and remobilization) of P along the land-freshwater continuum. This often hinders our attempts to directly link watershed P sources with their water quality impacts. Here, we examine aspects of within-river retention of wastewater effluent P and its remobilization under high flows. Most source apportionment methods attribute P loads mobilized under high flows (including retained and remobilized effluent P) as nonpoint agricultural sources. We present a new simple empirical method which uses chloride as a conservative tracer of wastewater effluent, to quantify within-river retention of effluent P, and its contribution to river P loads, when remobilized under high flows. We demonstrate that within-river P retention can effectively mask the presence of effluent P inputs in the water quality record. Moreover, we highlight that by not accounting for the contributions of retained and remobilized effluent P to river storm-flow P loads, existing source apportionment methods may significantly overestimate the nonpoint agricultural sources and underestimate wastewater sources in mixed land-use watersheds. This has important implications for developing effective watershed remediation strategies, where remediation needs to be equitably and accurately apportioned among point and nonpoint P contributors. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es303562y |