Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations
Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global‐scale BC concentrations. Previously, an ensemble of such models was compared to measurements...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2012-12, Vol.117 (D23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D23 |
container_start_page | |
container_title | Journal of Geophysical Research: Atmospheres |
container_volume | 117 |
creator | Fan, S.-M. Schwarz, J. P. Liu, J. Fahey, D. W. Ginoux, P. Horowitz, L. W. Levy II, H. Ming, Y. Spackman, J. R. |
description | Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global‐scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model‐data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed‐phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global‐scale BC measurements in this study has provided new, latitude‐dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.
Key Points
Bergeron process causes slow wet removal of BC during transport to the Arctic
Bergeron process may be inhibited in remote regions lacking ice nuclei
Ice formation processes may be inferred from global BC measurements |
doi_str_mv | 10.1029/2012JD018126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1239453781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844118291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4799-db17690720857b32c72adc418843654c7314b7599312266b30812714b33a8b003</originalsourceid><addsrcrecordid>eNp9kEFPHCEYhomxSTfWW38AifHWqfDBAHM0q241pk1tG70RYBhFZ4YVZls99p-X7RjTU7lAyPO-35cHofeUfKQEmiMgFC5OCFUUxA5aAK1FBUBgFy0I5aoiAPIt2s_5npTDa8EJXaDf52PnUwrjLQ7O4y6mwUwhjnidovM5-4y7FAd820dr-io703tse-MesDPJzmAX-sJFm3366VscRjzdeZz8ECePzTTEvL7zqTzHFg-x9T3OYdj0fwfld-hNZ_rs91_uPfTj7PT78lN1-WV1vjy-rByXTVO1lkrREAlE1dIycBJM6zhVijNRcycZ5VbWTcMogBCWkSJClj_GjLKEsD10MPeWhR83Pk_6Pm7SWEZqCqzhNZOKFurDTLkUc06-0-sUBpOeNSV661n_67nghy-lZqumS2Z0Ib9mQCgONWxr2cz9Kqqe_9upL1ZXJ1SVlUqqmlMhT_7pNWXSgxaSyVpff17ps5vl9ddvzY2-Yn8AIkKaMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1239453781</pqid></control><display><type>article</type><title>Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Fan, S.-M. ; Schwarz, J. P. ; Liu, J. ; Fahey, D. W. ; Ginoux, P. ; Horowitz, L. W. ; Levy II, H. ; Ming, Y. ; Spackman, J. R.</creator><creatorcontrib>Fan, S.-M. ; Schwarz, J. P. ; Liu, J. ; Fahey, D. W. ; Ginoux, P. ; Horowitz, L. W. ; Levy II, H. ; Ming, Y. ; Spackman, J. R.</creatorcontrib><description>Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global‐scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model‐data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed‐phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global‐scale BC measurements in this study has provided new, latitude‐dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.
Key Points
Bergeron process causes slow wet removal of BC during transport to the Arctic
Bergeron process may be inhibited in remote regions lacking ice nuclei
Ice formation processes may be inferred from global BC measurements</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2012JD018126</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Atmosphere ; Atmospheric aerosols ; Atmospheric sciences ; Bergeron process ; Black carbon ; Chemistry ; Climate models ; Clouds ; Condensation ; Crystal growth ; Crystals ; Earth sciences ; Earth, ocean, space ; Evaporation ; Exact sciences and technology ; External geophysics ; Freezing ; Geophysics ; High performance computing ; Ice ; Ice formation ; ice nucleation ; in-cloud scavenging ; mixed-phase cloud ; Physics ; Solar radiation ; Troposphere ; wet deposition</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2012-12, Vol.117 (D23), p.n/a</ispartof><rights>This paper is not subject to U.S. copyright. Published in 2012 by the American Geophysical Union</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4799-db17690720857b32c72adc418843654c7314b7599312266b30812714b33a8b003</citedby><cites>FETCH-LOGICAL-c4799-db17690720857b32c72adc418843654c7314b7599312266b30812714b33a8b003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JD018126$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JD018126$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26842521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, S.-M.</creatorcontrib><creatorcontrib>Schwarz, J. P.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Fahey, D. W.</creatorcontrib><creatorcontrib>Ginoux, P.</creatorcontrib><creatorcontrib>Horowitz, L. W.</creatorcontrib><creatorcontrib>Levy II, H.</creatorcontrib><creatorcontrib>Ming, Y.</creatorcontrib><creatorcontrib>Spackman, J. R.</creatorcontrib><title>Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global‐scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model‐data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed‐phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global‐scale BC measurements in this study has provided new, latitude‐dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.
Key Points
Bergeron process causes slow wet removal of BC during transport to the Arctic
Bergeron process may be inhibited in remote regions lacking ice nuclei
Ice formation processes may be inferred from global BC measurements</description><subject>Aerosols</subject><subject>Atmosphere</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>Bergeron process</subject><subject>Black carbon</subject><subject>Chemistry</subject><subject>Climate models</subject><subject>Clouds</subject><subject>Condensation</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Freezing</subject><subject>Geophysics</subject><subject>High performance computing</subject><subject>Ice</subject><subject>Ice formation</subject><subject>ice nucleation</subject><subject>in-cloud scavenging</subject><subject>mixed-phase cloud</subject><subject>Physics</subject><subject>Solar radiation</subject><subject>Troposphere</subject><subject>wet deposition</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFPHCEYhomxSTfWW38AifHWqfDBAHM0q241pk1tG70RYBhFZ4YVZls99p-X7RjTU7lAyPO-35cHofeUfKQEmiMgFC5OCFUUxA5aAK1FBUBgFy0I5aoiAPIt2s_5npTDa8EJXaDf52PnUwrjLQ7O4y6mwUwhjnidovM5-4y7FAd820dr-io703tse-MesDPJzmAX-sJFm3366VscRjzdeZz8ECePzTTEvL7zqTzHFg-x9T3OYdj0fwfld-hNZ_rs91_uPfTj7PT78lN1-WV1vjy-rByXTVO1lkrREAlE1dIycBJM6zhVijNRcycZ5VbWTcMogBCWkSJClj_GjLKEsD10MPeWhR83Pk_6Pm7SWEZqCqzhNZOKFurDTLkUc06-0-sUBpOeNSV661n_67nghy-lZqumS2Z0Ib9mQCgONWxr2cz9Kqqe_9upL1ZXJ1SVlUqqmlMhT_7pNWXSgxaSyVpff17ps5vl9ddvzY2-Yn8AIkKaMg</recordid><startdate>20121216</startdate><enddate>20121216</enddate><creator>Fan, S.-M.</creator><creator>Schwarz, J. P.</creator><creator>Liu, J.</creator><creator>Fahey, D. W.</creator><creator>Ginoux, P.</creator><creator>Horowitz, L. W.</creator><creator>Levy II, H.</creator><creator>Ming, Y.</creator><creator>Spackman, J. R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20121216</creationdate><title>Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations</title><author>Fan, S.-M. ; Schwarz, J. P. ; Liu, J. ; Fahey, D. W. ; Ginoux, P. ; Horowitz, L. W. ; Levy II, H. ; Ming, Y. ; Spackman, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4799-db17690720857b32c72adc418843654c7314b7599312266b30812714b33a8b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerosols</topic><topic>Atmosphere</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>Bergeron process</topic><topic>Black carbon</topic><topic>Chemistry</topic><topic>Climate models</topic><topic>Clouds</topic><topic>Condensation</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Freezing</topic><topic>Geophysics</topic><topic>High performance computing</topic><topic>Ice</topic><topic>Ice formation</topic><topic>ice nucleation</topic><topic>in-cloud scavenging</topic><topic>mixed-phase cloud</topic><topic>Physics</topic><topic>Solar radiation</topic><topic>Troposphere</topic><topic>wet deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, S.-M.</creatorcontrib><creatorcontrib>Schwarz, J. P.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Fahey, D. W.</creatorcontrib><creatorcontrib>Ginoux, P.</creatorcontrib><creatorcontrib>Horowitz, L. W.</creatorcontrib><creatorcontrib>Levy II, H.</creatorcontrib><creatorcontrib>Ming, Y.</creatorcontrib><creatorcontrib>Spackman, J. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, S.-M.</au><au>Schwarz, J. P.</au><au>Liu, J.</au><au>Fahey, D. W.</au><au>Ginoux, P.</au><au>Horowitz, L. W.</au><au>Levy II, H.</au><au>Ming, Y.</au><au>Spackman, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-12-16</date><risdate>2012</risdate><volume>117</volume><issue>D23</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global‐scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model‐data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed‐phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global‐scale BC measurements in this study has provided new, latitude‐dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.
Key Points
Bergeron process causes slow wet removal of BC during transport to the Arctic
Bergeron process may be inhibited in remote regions lacking ice nuclei
Ice formation processes may be inferred from global BC measurements</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JD018126</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Atmospheres, 2012-12, Vol.117 (D23), p.n/a |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_1239453781 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Aerosols Atmosphere Atmospheric aerosols Atmospheric sciences Bergeron process Black carbon Chemistry Climate models Clouds Condensation Crystal growth Crystals Earth sciences Earth, ocean, space Evaporation Exact sciences and technology External geophysics Freezing Geophysics High performance computing Ice Ice formation ice nucleation in-cloud scavenging mixed-phase cloud Physics Solar radiation Troposphere wet deposition |
title | Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20ice%20formation%20processes%20from%20global-scale%20black%20carbon%20profiles%20observed%20in%20the%20remote%20atmosphere%20and%20model%20simulations&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Fan,%20S.-M.&rft.date=2012-12-16&rft.volume=117&rft.issue=D23&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2012JD018126&rft_dat=%3Cproquest_cross%3E2844118291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1239453781&rft_id=info:pmid/&rfr_iscdi=true |