The autooxidation process in linoleic acid screened by Raman spectroscopy

The chemical changes associated to the autooxidation process of linoleic acid (LA) were detected by Raman spectroscopy and interpreted in the light of density functional theory (DFT) calculations performed for both the fatty acid and its main oxidation products. The present methodology, applied for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2012-12, Vol.43 (12), p.1991-2000
Hauptverfasser: Machado, N. F. L., de Carvalho, L. A. E. Batista, Otero, J. C., Marques, M. P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2000
container_issue 12
container_start_page 1991
container_title Journal of Raman spectroscopy
container_volume 43
creator Machado, N. F. L.
de Carvalho, L. A. E. Batista
Otero, J. C.
Marques, M. P. M.
description The chemical changes associated to the autooxidation process of linoleic acid (LA) were detected by Raman spectroscopy and interpreted in the light of density functional theory (DFT) calculations performed for both the fatty acid and its main oxidation products. The present methodology, applied for a six‐day period upon induction of oxidation (through heating), allowed to understand the chemical modifications occurring during the oxidation process. Raman spectroscopy was shown to be a suitable and reliable technique for assessing the oxidation degree of fatty acid samples, particularly pure fatty acids, mainly when computational methods are used alongside to predict the spectral features of the distinct chemical entities involved. Screening of the oxidation process was mostly based on the loss of intensity of the bands assigned to LA cis‐double bonds. Copyright © 2012 John Wiley & Sons, Ltd. The chemical changes associated to the autooxidation process of LA were detected by Raman spectroscopy and interpreted in the light of DFT calculations. The success of Raman spectroscopy in probing the oxidation state of a fatty acid, coupled to a simpler setup and virtually no sample preparation, renders this technique a very useful and promising tool, namely for assessing the quality of edible oils and other lipid‐containing food products in situ.
doi_str_mv 10.1002/jrs.4121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1238333446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841822771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3651-6b40bfae6ec679bf91287aa5dfc8d2cf5574362c7cca76e7035cd2f6bd3421733</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgCs4p-BECXrx05n_aowytk6kwp_MW0jTFzK6ZSYfrt7djInjw9F5-vM_DA8A5RiOMELlahjhimOADMMAokwnjnB-CAaJSJoil4hicxLhECGWZwAMwmb9bqDet91tX6tb5Bq6DNzZG6BpYu8bX1hmojSthNMHaxpaw6OBMr3QD49qaNvho_Lo7BUeVrqM9-7lD8HJ7Mx_fJdOnfDK-niaGCo4TUTBUVNoKa4TMiirDJJVa87IyaUlMxblkVBAjjdFSWIkoNyWpRFFSRrCkdAgu9n_7np8bG1u19JvQ9JEKE5pSShkTvbrcK9PXi8FWah3cSodOYaR2Q6l-KLUbqqfJnn652nb_OnU_e_7rXWzt9tfr8KGEpJKrxWOuFuQtf2D5q2L0G32DeRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238333446</pqid></control><display><type>article</type><title>The autooxidation process in linoleic acid screened by Raman spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Machado, N. F. L. ; de Carvalho, L. A. E. Batista ; Otero, J. C. ; Marques, M. P. M.</creator><creatorcontrib>Machado, N. F. L. ; de Carvalho, L. A. E. Batista ; Otero, J. C. ; Marques, M. P. M.</creatorcontrib><description>The chemical changes associated to the autooxidation process of linoleic acid (LA) were detected by Raman spectroscopy and interpreted in the light of density functional theory (DFT) calculations performed for both the fatty acid and its main oxidation products. The present methodology, applied for a six‐day period upon induction of oxidation (through heating), allowed to understand the chemical modifications occurring during the oxidation process. Raman spectroscopy was shown to be a suitable and reliable technique for assessing the oxidation degree of fatty acid samples, particularly pure fatty acids, mainly when computational methods are used alongside to predict the spectral features of the distinct chemical entities involved. Screening of the oxidation process was mostly based on the loss of intensity of the bands assigned to LA cis‐double bonds. Copyright © 2012 John Wiley &amp; Sons, Ltd. The chemical changes associated to the autooxidation process of LA were detected by Raman spectroscopy and interpreted in the light of DFT calculations. The success of Raman spectroscopy in probing the oxidation state of a fatty acid, coupled to a simpler setup and virtually no sample preparation, renders this technique a very useful and promising tool, namely for assessing the quality of edible oils and other lipid‐containing food products in situ.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.4121</identifier><identifier>CODEN: JRSPAF</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>assay for antioxidant activity ; DFT calculations ; linoleic acid ; oxidation ; Raman spectroscopy</subject><ispartof>Journal of Raman spectroscopy, 2012-12, Vol.43 (12), p.1991-2000</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3651-6b40bfae6ec679bf91287aa5dfc8d2cf5574362c7cca76e7035cd2f6bd3421733</citedby><cites>FETCH-LOGICAL-c3651-6b40bfae6ec679bf91287aa5dfc8d2cf5574362c7cca76e7035cd2f6bd3421733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.4121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.4121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Machado, N. F. L.</creatorcontrib><creatorcontrib>de Carvalho, L. A. E. Batista</creatorcontrib><creatorcontrib>Otero, J. C.</creatorcontrib><creatorcontrib>Marques, M. P. M.</creatorcontrib><title>The autooxidation process in linoleic acid screened by Raman spectroscopy</title><title>Journal of Raman spectroscopy</title><addtitle>J. Raman Spectrosc</addtitle><description>The chemical changes associated to the autooxidation process of linoleic acid (LA) were detected by Raman spectroscopy and interpreted in the light of density functional theory (DFT) calculations performed for both the fatty acid and its main oxidation products. The present methodology, applied for a six‐day period upon induction of oxidation (through heating), allowed to understand the chemical modifications occurring during the oxidation process. Raman spectroscopy was shown to be a suitable and reliable technique for assessing the oxidation degree of fatty acid samples, particularly pure fatty acids, mainly when computational methods are used alongside to predict the spectral features of the distinct chemical entities involved. Screening of the oxidation process was mostly based on the loss of intensity of the bands assigned to LA cis‐double bonds. Copyright © 2012 John Wiley &amp; Sons, Ltd. The chemical changes associated to the autooxidation process of LA were detected by Raman spectroscopy and interpreted in the light of DFT calculations. The success of Raman spectroscopy in probing the oxidation state of a fatty acid, coupled to a simpler setup and virtually no sample preparation, renders this technique a very useful and promising tool, namely for assessing the quality of edible oils and other lipid‐containing food products in situ.</description><subject>assay for antioxidant activity</subject><subject>DFT calculations</subject><subject>linoleic acid</subject><subject>oxidation</subject><subject>Raman spectroscopy</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYBvAgCs4p-BECXrx05n_aowytk6kwp_MW0jTFzK6ZSYfrt7djInjw9F5-vM_DA8A5RiOMELlahjhimOADMMAokwnjnB-CAaJSJoil4hicxLhECGWZwAMwmb9bqDet91tX6tb5Bq6DNzZG6BpYu8bX1hmojSthNMHaxpaw6OBMr3QD49qaNvho_Lo7BUeVrqM9-7lD8HJ7Mx_fJdOnfDK-niaGCo4TUTBUVNoKa4TMiirDJJVa87IyaUlMxblkVBAjjdFSWIkoNyWpRFFSRrCkdAgu9n_7np8bG1u19JvQ9JEKE5pSShkTvbrcK9PXi8FWah3cSodOYaR2Q6l-KLUbqqfJnn652nb_OnU_e_7rXWzt9tfr8KGEpJKrxWOuFuQtf2D5q2L0G32DeRc</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Machado, N. F. L.</creator><creator>de Carvalho, L. A. E. Batista</creator><creator>Otero, J. C.</creator><creator>Marques, M. P. M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201212</creationdate><title>The autooxidation process in linoleic acid screened by Raman spectroscopy</title><author>Machado, N. F. L. ; de Carvalho, L. A. E. Batista ; Otero, J. C. ; Marques, M. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3651-6b40bfae6ec679bf91287aa5dfc8d2cf5574362c7cca76e7035cd2f6bd3421733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>assay for antioxidant activity</topic><topic>DFT calculations</topic><topic>linoleic acid</topic><topic>oxidation</topic><topic>Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machado, N. F. L.</creatorcontrib><creatorcontrib>de Carvalho, L. A. E. Batista</creatorcontrib><creatorcontrib>Otero, J. C.</creatorcontrib><creatorcontrib>Marques, M. P. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado, N. F. L.</au><au>de Carvalho, L. A. E. Batista</au><au>Otero, J. C.</au><au>Marques, M. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The autooxidation process in linoleic acid screened by Raman spectroscopy</atitle><jtitle>Journal of Raman spectroscopy</jtitle><addtitle>J. Raman Spectrosc</addtitle><date>2012-12</date><risdate>2012</risdate><volume>43</volume><issue>12</issue><spage>1991</spage><epage>2000</epage><pages>1991-2000</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><coden>JRSPAF</coden><abstract>The chemical changes associated to the autooxidation process of linoleic acid (LA) were detected by Raman spectroscopy and interpreted in the light of density functional theory (DFT) calculations performed for both the fatty acid and its main oxidation products. The present methodology, applied for a six‐day period upon induction of oxidation (through heating), allowed to understand the chemical modifications occurring during the oxidation process. Raman spectroscopy was shown to be a suitable and reliable technique for assessing the oxidation degree of fatty acid samples, particularly pure fatty acids, mainly when computational methods are used alongside to predict the spectral features of the distinct chemical entities involved. Screening of the oxidation process was mostly based on the loss of intensity of the bands assigned to LA cis‐double bonds. Copyright © 2012 John Wiley &amp; Sons, Ltd. The chemical changes associated to the autooxidation process of LA were detected by Raman spectroscopy and interpreted in the light of DFT calculations. The success of Raman spectroscopy in probing the oxidation state of a fatty acid, coupled to a simpler setup and virtually no sample preparation, renders this technique a very useful and promising tool, namely for assessing the quality of edible oils and other lipid‐containing food products in situ.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jrs.4121</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2012-12, Vol.43 (12), p.1991-2000
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_1238333446
source Wiley Online Library Journals Frontfile Complete
subjects assay for antioxidant activity
DFT calculations
linoleic acid
oxidation
Raman spectroscopy
title The autooxidation process in linoleic acid screened by Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20autooxidation%20process%20in%20linoleic%20acid%20screened%20by%20Raman%20spectroscopy&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Machado,%20N.%20F.%20L.&rft.date=2012-12&rft.volume=43&rft.issue=12&rft.spage=1991&rft.epage=2000&rft.pages=1991-2000&rft.issn=0377-0486&rft.eissn=1097-4555&rft.coden=JRSPAF&rft_id=info:doi/10.1002/jrs.4121&rft_dat=%3Cproquest_cross%3E2841822771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238333446&rft_id=info:pmid/&rfr_iscdi=true