Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network
Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Her...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (50), p.20768-20773 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20773 |
---|---|
container_issue | 50 |
container_start_page | 20768 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Busser, Brian W Huang, Di Rogacki, Kevin R Lane, Elizabeth A Shokri, Leila Ni, Ting Gamble, Caitlin E Gisselbrecht, Stephen S Zhu, Jun Bulyk, Martha L Ovcharenko, Ivan Michelson, Alan M |
description | Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems. |
doi_str_mv | 10.1073/pnas.1210415109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1238251254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830600</jstor_id><sourcerecordid>41830600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwxIVL2vFX1rkgofJVaSUO0LM1SZyst4kd7KQo_PV42WULXMaS3--NPfOy7DmFCwprfjk6jBeUURBUUigfZKtUaV6IEh5mKwC2zpVg4ix7EuMOAEqp4HF2xjhVolRqlS3XbjJdwMneGYIO-yXaSHxLpq0hP62rSWtdZwKZArpYBztO1jvSYj35QDY4GNLM9S2x7rfjffDRj1vbIxkW3xlna5KqIcF0c4_JsxBnph8-3D7NHrXYR_PseJ5nNx8_fLv6nG--fLq-erfJa8nklFclKLmuKqwagUUrkRWqpcAbUSGvBIWCcxSspJVEBZzJQtSY7mRVUi6ahp9nbw99x7kaTFMbl0bp9RjsgGHRHq3-V3F2qzt_p7lkSjKWGrw5Ngj--2zipAcba9P36Iyfo6bpWVCKlmVCX_-H7vwc0lYTxbhikjIpEnV5oOq0rRhMe_oMBb2PVe9j1fexJsfLv2c48X9yTAA5AnvnfbtSS9AM1sUeeXFAdjHFcGIEVRwKgKS_Ougteo1dsFHffGVAk0Y5SFXwX4DrvZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238251254</pqid></control><display><type>article</type><title>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Busser, Brian W ; Huang, Di ; Rogacki, Kevin R ; Lane, Elizabeth A ; Shokri, Leila ; Ni, Ting ; Gamble, Caitlin E ; Gisselbrecht, Stephen S ; Zhu, Jun ; Bulyk, Martha L ; Ovcharenko, Ivan ; Michelson, Alan M</creator><creatorcontrib>Busser, Brian W ; Huang, Di ; Rogacki, Kevin R ; Lane, Elizabeth A ; Shokri, Leila ; Ni, Ting ; Gamble, Caitlin E ; Gisselbrecht, Stephen S ; Zhu, Jun ; Bulyk, Martha L ; Ovcharenko, Ivan ; Michelson, Alan M</creatorcontrib><description>Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1210415109</identifier><identifier>PMID: 23184988</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Animals, Genetically Modified ; Artificial Intelligence ; Base Sequence ; binding proteins ; Binding sites ; Binding Sites - genetics ; Biological Sciences ; data collection ; Datasets ; DNA ; DNA - genetics ; DNA - metabolism ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Enhancer Elements, Genetic ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genes ; Genome, Insect ; Genomes ; Genomics ; Histones ; Insects ; Mesoderm ; Mesoderm - cytology ; Mesoderm - growth & development ; Mesoderm - metabolism ; messenger RNA ; microarray technology ; Molecular Sequence Data ; Muscle Development - genetics ; muscles ; Mutagenesis ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myogenic Regulatory Factors - genetics ; Myogenic Regulatory Factors - metabolism ; Proteins ; regulator genes ; site-directed mutagenesis ; Systems Biology ; transcription (genetics) ; transcription factors ; Transcriptome ; zinc finger motif</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (50), p.20768-20773</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 11, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</citedby><cites>FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23184988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busser, Brian W</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><creatorcontrib>Rogacki, Kevin R</creatorcontrib><creatorcontrib>Lane, Elizabeth A</creatorcontrib><creatorcontrib>Shokri, Leila</creatorcontrib><creatorcontrib>Ni, Ting</creatorcontrib><creatorcontrib>Gamble, Caitlin E</creatorcontrib><creatorcontrib>Gisselbrecht, Stephen S</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Bulyk, Martha L</creatorcontrib><creatorcontrib>Ovcharenko, Ivan</creatorcontrib><creatorcontrib>Michelson, Alan M</creatorcontrib><title>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Artificial Intelligence</subject><subject>Base Sequence</subject><subject>binding proteins</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>data collection</subject><subject>Datasets</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Histones</subject><subject>Insects</subject><subject>Mesoderm</subject><subject>Mesoderm - cytology</subject><subject>Mesoderm - growth & development</subject><subject>Mesoderm - metabolism</subject><subject>messenger RNA</subject><subject>microarray technology</subject><subject>Molecular Sequence Data</subject><subject>Muscle Development - genetics</subject><subject>muscles</subject><subject>Mutagenesis</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myogenic Regulatory Factors - genetics</subject><subject>Myogenic Regulatory Factors - metabolism</subject><subject>Proteins</subject><subject>regulator genes</subject><subject>site-directed mutagenesis</subject><subject>Systems Biology</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcriptome</subject><subject>zinc finger motif</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmwxIVL2vFX1rkgofJVaSUO0LM1SZyst4kd7KQo_PV42WULXMaS3--NPfOy7DmFCwprfjk6jBeUURBUUigfZKtUaV6IEh5mKwC2zpVg4ix7EuMOAEqp4HF2xjhVolRqlS3XbjJdwMneGYIO-yXaSHxLpq0hP62rSWtdZwKZArpYBztO1jvSYj35QDY4GNLM9S2x7rfjffDRj1vbIxkW3xlna5KqIcF0c4_JsxBnph8-3D7NHrXYR_PseJ5nNx8_fLv6nG--fLq-erfJa8nklFclKLmuKqwagUUrkRWqpcAbUSGvBIWCcxSspJVEBZzJQtSY7mRVUi6ahp9nbw99x7kaTFMbl0bp9RjsgGHRHq3-V3F2qzt_p7lkSjKWGrw5Ngj--2zipAcba9P36Iyfo6bpWVCKlmVCX_-H7vwc0lYTxbhikjIpEnV5oOq0rRhMe_oMBb2PVe9j1fexJsfLv2c48X9yTAA5AnvnfbtSS9AM1sUeeXFAdjHFcGIEVRwKgKS_Ougteo1dsFHffGVAk0Y5SFXwX4DrvZQ</recordid><startdate>20121211</startdate><enddate>20121211</enddate><creator>Busser, Brian W</creator><creator>Huang, Di</creator><creator>Rogacki, Kevin R</creator><creator>Lane, Elizabeth A</creator><creator>Shokri, Leila</creator><creator>Ni, Ting</creator><creator>Gamble, Caitlin E</creator><creator>Gisselbrecht, Stephen S</creator><creator>Zhu, Jun</creator><creator>Bulyk, Martha L</creator><creator>Ovcharenko, Ivan</creator><creator>Michelson, Alan M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121211</creationdate><title>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</title><author>Busser, Brian W ; Huang, Di ; Rogacki, Kevin R ; Lane, Elizabeth A ; Shokri, Leila ; Ni, Ting ; Gamble, Caitlin E ; Gisselbrecht, Stephen S ; Zhu, Jun ; Bulyk, Martha L ; Ovcharenko, Ivan ; Michelson, Alan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Artificial Intelligence</topic><topic>Base Sequence</topic><topic>binding proteins</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>data collection</topic><topic>Datasets</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Histones</topic><topic>Insects</topic><topic>Mesoderm</topic><topic>Mesoderm - cytology</topic><topic>Mesoderm - growth & development</topic><topic>Mesoderm - metabolism</topic><topic>messenger RNA</topic><topic>microarray technology</topic><topic>Molecular Sequence Data</topic><topic>Muscle Development - genetics</topic><topic>muscles</topic><topic>Mutagenesis</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myogenic Regulatory Factors - genetics</topic><topic>Myogenic Regulatory Factors - metabolism</topic><topic>Proteins</topic><topic>regulator genes</topic><topic>site-directed mutagenesis</topic><topic>Systems Biology</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcriptome</topic><topic>zinc finger motif</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busser, Brian W</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><creatorcontrib>Rogacki, Kevin R</creatorcontrib><creatorcontrib>Lane, Elizabeth A</creatorcontrib><creatorcontrib>Shokri, Leila</creatorcontrib><creatorcontrib>Ni, Ting</creatorcontrib><creatorcontrib>Gamble, Caitlin E</creatorcontrib><creatorcontrib>Gisselbrecht, Stephen S</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Bulyk, Martha L</creatorcontrib><creatorcontrib>Ovcharenko, Ivan</creatorcontrib><creatorcontrib>Michelson, Alan M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busser, Brian W</au><au>Huang, Di</au><au>Rogacki, Kevin R</au><au>Lane, Elizabeth A</au><au>Shokri, Leila</au><au>Ni, Ting</au><au>Gamble, Caitlin E</au><au>Gisselbrecht, Stephen S</au><au>Zhu, Jun</au><au>Bulyk, Martha L</au><au>Ovcharenko, Ivan</au><au>Michelson, Alan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-11</date><risdate>2012</risdate><volume>109</volume><issue>50</issue><spage>20768</spage><epage>20773</epage><pages>20768-20773</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23184988</pmid><doi>10.1073/pnas.1210415109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (50), p.20768-20773 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1238251254 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Animals, Genetically Modified Artificial Intelligence Base Sequence binding proteins Binding sites Binding Sites - genetics Biological Sciences data collection Datasets DNA DNA - genetics DNA - metabolism Drosophila Drosophila melanogaster - cytology Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Enhancer Elements, Genetic Gene expression gene expression regulation Gene Expression Regulation, Developmental Gene Regulatory Networks Genes Genome, Insect Genomes Genomics Histones Insects Mesoderm Mesoderm - cytology Mesoderm - growth & development Mesoderm - metabolism messenger RNA microarray technology Molecular Sequence Data Muscle Development - genetics muscles Mutagenesis Myoblasts Myoblasts - cytology Myoblasts - metabolism Myogenic Regulatory Factors - genetics Myogenic Regulatory Factors - metabolism Proteins regulator genes site-directed mutagenesis Systems Biology transcription (genetics) transcription factors Transcriptome zinc finger motif |
title | Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20the%20zinc%20finger%20transcription%20factor%20Lame%20duck%20in%20the%20Drosophila%20myogenic%20gene%20regulatory%20network&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Busser,%20Brian%20W&rft.date=2012-12-11&rft.volume=109&rft.issue=50&rft.spage=20768&rft.epage=20773&rft.pages=20768-20773&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1210415109&rft_dat=%3Cjstor_proqu%3E41830600%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238251254&rft_id=info:pmid/23184988&rft_jstor_id=41830600&rfr_iscdi=true |