Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network

Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (50), p.20768-20773
Hauptverfasser: Busser, Brian W, Huang, Di, Rogacki, Kevin R, Lane, Elizabeth A, Shokri, Leila, Ni, Ting, Gamble, Caitlin E, Gisselbrecht, Stephen S, Zhu, Jun, Bulyk, Martha L, Ovcharenko, Ivan, Michelson, Alan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20773
container_issue 50
container_start_page 20768
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Busser, Brian W
Huang, Di
Rogacki, Kevin R
Lane, Elizabeth A
Shokri, Leila
Ni, Ting
Gamble, Caitlin E
Gisselbrecht, Stephen S
Zhu, Jun
Bulyk, Martha L
Ovcharenko, Ivan
Michelson, Alan M
description Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.
doi_str_mv 10.1073/pnas.1210415109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1238251254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830600</jstor_id><sourcerecordid>41830600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwxIVL2vFX1rkgofJVaSUO0LM1SZyst4kd7KQo_PV42WULXMaS3--NPfOy7DmFCwprfjk6jBeUURBUUigfZKtUaV6IEh5mKwC2zpVg4ix7EuMOAEqp4HF2xjhVolRqlS3XbjJdwMneGYIO-yXaSHxLpq0hP62rSWtdZwKZArpYBztO1jvSYj35QDY4GNLM9S2x7rfjffDRj1vbIxkW3xlna5KqIcF0c4_JsxBnph8-3D7NHrXYR_PseJ5nNx8_fLv6nG--fLq-erfJa8nklFclKLmuKqwagUUrkRWqpcAbUSGvBIWCcxSspJVEBZzJQtSY7mRVUi6ahp9nbw99x7kaTFMbl0bp9RjsgGHRHq3-V3F2qzt_p7lkSjKWGrw5Ngj--2zipAcba9P36Iyfo6bpWVCKlmVCX_-H7vwc0lYTxbhikjIpEnV5oOq0rRhMe_oMBb2PVe9j1fexJsfLv2c48X9yTAA5AnvnfbtSS9AM1sUeeXFAdjHFcGIEVRwKgKS_Ougteo1dsFHffGVAk0Y5SFXwX4DrvZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238251254</pqid></control><display><type>article</type><title>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Busser, Brian W ; Huang, Di ; Rogacki, Kevin R ; Lane, Elizabeth A ; Shokri, Leila ; Ni, Ting ; Gamble, Caitlin E ; Gisselbrecht, Stephen S ; Zhu, Jun ; Bulyk, Martha L ; Ovcharenko, Ivan ; Michelson, Alan M</creator><creatorcontrib>Busser, Brian W ; Huang, Di ; Rogacki, Kevin R ; Lane, Elizabeth A ; Shokri, Leila ; Ni, Ting ; Gamble, Caitlin E ; Gisselbrecht, Stephen S ; Zhu, Jun ; Bulyk, Martha L ; Ovcharenko, Ivan ; Michelson, Alan M</creatorcontrib><description>Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1210415109</identifier><identifier>PMID: 23184988</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Animals, Genetically Modified ; Artificial Intelligence ; Base Sequence ; binding proteins ; Binding sites ; Binding Sites - genetics ; Biological Sciences ; data collection ; Datasets ; DNA ; DNA - genetics ; DNA - metabolism ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Enhancer Elements, Genetic ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genes ; Genome, Insect ; Genomes ; Genomics ; Histones ; Insects ; Mesoderm ; Mesoderm - cytology ; Mesoderm - growth &amp; development ; Mesoderm - metabolism ; messenger RNA ; microarray technology ; Molecular Sequence Data ; Muscle Development - genetics ; muscles ; Mutagenesis ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myogenic Regulatory Factors - genetics ; Myogenic Regulatory Factors - metabolism ; Proteins ; regulator genes ; site-directed mutagenesis ; Systems Biology ; transcription (genetics) ; transcription factors ; Transcriptome ; zinc finger motif</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (50), p.20768-20773</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 11, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</citedby><cites>FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23184988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busser, Brian W</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><creatorcontrib>Rogacki, Kevin R</creatorcontrib><creatorcontrib>Lane, Elizabeth A</creatorcontrib><creatorcontrib>Shokri, Leila</creatorcontrib><creatorcontrib>Ni, Ting</creatorcontrib><creatorcontrib>Gamble, Caitlin E</creatorcontrib><creatorcontrib>Gisselbrecht, Stephen S</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Bulyk, Martha L</creatorcontrib><creatorcontrib>Ovcharenko, Ivan</creatorcontrib><creatorcontrib>Michelson, Alan M</creatorcontrib><title>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Artificial Intelligence</subject><subject>Base Sequence</subject><subject>binding proteins</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>data collection</subject><subject>Datasets</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Histones</subject><subject>Insects</subject><subject>Mesoderm</subject><subject>Mesoderm - cytology</subject><subject>Mesoderm - growth &amp; development</subject><subject>Mesoderm - metabolism</subject><subject>messenger RNA</subject><subject>microarray technology</subject><subject>Molecular Sequence Data</subject><subject>Muscle Development - genetics</subject><subject>muscles</subject><subject>Mutagenesis</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myogenic Regulatory Factors - genetics</subject><subject>Myogenic Regulatory Factors - metabolism</subject><subject>Proteins</subject><subject>regulator genes</subject><subject>site-directed mutagenesis</subject><subject>Systems Biology</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcriptome</subject><subject>zinc finger motif</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmwxIVL2vFX1rkgofJVaSUO0LM1SZyst4kd7KQo_PV42WULXMaS3--NPfOy7DmFCwprfjk6jBeUURBUUigfZKtUaV6IEh5mKwC2zpVg4ix7EuMOAEqp4HF2xjhVolRqlS3XbjJdwMneGYIO-yXaSHxLpq0hP62rSWtdZwKZArpYBztO1jvSYj35QDY4GNLM9S2x7rfjffDRj1vbIxkW3xlna5KqIcF0c4_JsxBnph8-3D7NHrXYR_PseJ5nNx8_fLv6nG--fLq-erfJa8nklFclKLmuKqwagUUrkRWqpcAbUSGvBIWCcxSspJVEBZzJQtSY7mRVUi6ahp9nbw99x7kaTFMbl0bp9RjsgGHRHq3-V3F2qzt_p7lkSjKWGrw5Ngj--2zipAcba9P36Iyfo6bpWVCKlmVCX_-H7vwc0lYTxbhikjIpEnV5oOq0rRhMe_oMBb2PVe9j1fexJsfLv2c48X9yTAA5AnvnfbtSS9AM1sUeeXFAdjHFcGIEVRwKgKS_Ougteo1dsFHffGVAk0Y5SFXwX4DrvZQ</recordid><startdate>20121211</startdate><enddate>20121211</enddate><creator>Busser, Brian W</creator><creator>Huang, Di</creator><creator>Rogacki, Kevin R</creator><creator>Lane, Elizabeth A</creator><creator>Shokri, Leila</creator><creator>Ni, Ting</creator><creator>Gamble, Caitlin E</creator><creator>Gisselbrecht, Stephen S</creator><creator>Zhu, Jun</creator><creator>Bulyk, Martha L</creator><creator>Ovcharenko, Ivan</creator><creator>Michelson, Alan M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121211</creationdate><title>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</title><author>Busser, Brian W ; Huang, Di ; Rogacki, Kevin R ; Lane, Elizabeth A ; Shokri, Leila ; Ni, Ting ; Gamble, Caitlin E ; Gisselbrecht, Stephen S ; Zhu, Jun ; Bulyk, Martha L ; Ovcharenko, Ivan ; Michelson, Alan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-b90857bbabd4a6f5a268f103d4ba3b410633a4291b5a8032564ca6335b9134dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Artificial Intelligence</topic><topic>Base Sequence</topic><topic>binding proteins</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>data collection</topic><topic>Datasets</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Histones</topic><topic>Insects</topic><topic>Mesoderm</topic><topic>Mesoderm - cytology</topic><topic>Mesoderm - growth &amp; development</topic><topic>Mesoderm - metabolism</topic><topic>messenger RNA</topic><topic>microarray technology</topic><topic>Molecular Sequence Data</topic><topic>Muscle Development - genetics</topic><topic>muscles</topic><topic>Mutagenesis</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myogenic Regulatory Factors - genetics</topic><topic>Myogenic Regulatory Factors - metabolism</topic><topic>Proteins</topic><topic>regulator genes</topic><topic>site-directed mutagenesis</topic><topic>Systems Biology</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcriptome</topic><topic>zinc finger motif</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busser, Brian W</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><creatorcontrib>Rogacki, Kevin R</creatorcontrib><creatorcontrib>Lane, Elizabeth A</creatorcontrib><creatorcontrib>Shokri, Leila</creatorcontrib><creatorcontrib>Ni, Ting</creatorcontrib><creatorcontrib>Gamble, Caitlin E</creatorcontrib><creatorcontrib>Gisselbrecht, Stephen S</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Bulyk, Martha L</creatorcontrib><creatorcontrib>Ovcharenko, Ivan</creatorcontrib><creatorcontrib>Michelson, Alan M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busser, Brian W</au><au>Huang, Di</au><au>Rogacki, Kevin R</au><au>Lane, Elizabeth A</au><au>Shokri, Leila</au><au>Ni, Ting</au><au>Gamble, Caitlin E</au><au>Gisselbrecht, Stephen S</au><au>Zhu, Jun</au><au>Bulyk, Martha L</au><au>Ovcharenko, Ivan</au><au>Michelson, Alan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-11</date><risdate>2012</risdate><volume>109</volume><issue>50</issue><spage>20768</spage><epage>20773</epage><pages>20768-20773</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis -regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23184988</pmid><doi>10.1073/pnas.1210415109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (50), p.20768-20773
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1238251254
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Animals, Genetically Modified
Artificial Intelligence
Base Sequence
binding proteins
Binding sites
Binding Sites - genetics
Biological Sciences
data collection
Datasets
DNA
DNA - genetics
DNA - metabolism
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Enhancer Elements, Genetic
Gene expression
gene expression regulation
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Genes
Genome, Insect
Genomes
Genomics
Histones
Insects
Mesoderm
Mesoderm - cytology
Mesoderm - growth & development
Mesoderm - metabolism
messenger RNA
microarray technology
Molecular Sequence Data
Muscle Development - genetics
muscles
Mutagenesis
Myoblasts
Myoblasts - cytology
Myoblasts - metabolism
Myogenic Regulatory Factors - genetics
Myogenic Regulatory Factors - metabolism
Proteins
regulator genes
site-directed mutagenesis
Systems Biology
transcription (genetics)
transcription factors
Transcriptome
zinc finger motif
title Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20the%20zinc%20finger%20transcription%20factor%20Lame%20duck%20in%20the%20Drosophila%20myogenic%20gene%20regulatory%20network&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Busser,%20Brian%20W&rft.date=2012-12-11&rft.volume=109&rft.issue=50&rft.spage=20768&rft.epage=20773&rft.pages=20768-20773&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1210415109&rft_dat=%3Cjstor_proqu%3E41830600%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238251254&rft_id=info:pmid/23184988&rft_jstor_id=41830600&rfr_iscdi=true