Information Visualization for Chronic Disease Risk Assessment
Here, the authors describe and evaluate a new information-visualization method and prototype software tool that support risk assessment for negative health outcomes. Their framework uses principal component analysis and linear discriminant analysis to plot high-dimensional patient data in 2D. It als...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2012-11, Vol.27 (6), p.81-85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 6 |
container_start_page | 81 |
container_title | IEEE intelligent systems |
container_volume | 27 |
creator | Harle, C. A. Neill, D. B. Padman, R. |
description | Here, the authors describe and evaluate a new information-visualization method and prototype software tool that support risk assessment for negative health outcomes. Their framework uses principal component analysis and linear discriminant analysis to plot high-dimensional patient data in 2D. It also incorporates interactive visualization techniques to aid the identification of high versus low risk patients, critical risk factors, and the estimated effect of hypothetical interventions on the likelihood of negative outcomes. The authors quantitatively evaluated the visualization method using a secondary dataset describing 588 people with diabetes and their estimated future risk of heart attack. Their results show that the method visually classifies high- and low-risk people with accuracy that's similar to other common statistical methods. The framework also provides an interactive, visualization-based tool for clinicians to explore the nuances of their patients' data and disease risk. |
doi_str_mv | 10.1109/MIS.2012.112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1221950873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6365201</ieee_id><sourcerecordid>1268653750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-da73909f7b894d779591b4b12dedead206997200f70fabdf1511f278d3883aa63</originalsourceid><addsrcrecordid>eNqNkLtPwzAQxiMEEqWwsbFEQkgMpPjsxI4Hhqq8KhUh8VojJ7GFSx7Flwzw1-MoFQMT091397tPui8IjoHMAIi8fFg-zygB6hXdCSYgY4iAynjX98nQc0H3gwPENSGUEUgnwdWyMa2rVWfbJnyz2KvKfo_Kz8PFu2sbW4TXFrVCHT5Z_AjniBqx1k13GOwZVaE-2tZp8Hp787K4j1aPd8vFfBUVMYguKpVgkkgj8lTGpRAykZDHOdBSl1qVlHApBSXECGJUXhpIAAwVacnSlCnF2TQ4H303rv3sNXZZbbHQVaUa3faYAU0ZZzFI9g-UpzxhIiEePf2DrtveNf4RT1GQCUnFYHgxUoVrEZ022cbZWrmvDEg2xJ752LMhdq-ox8-2pgoLVRmnmsLi7w3lglCaDNzJyFmt9e-aM554K_YDJ2OIWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221950873</pqid></control><display><type>article</type><title>Information Visualization for Chronic Disease Risk Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>Harle, C. A. ; Neill, D. B. ; Padman, R.</creator><creatorcontrib>Harle, C. A. ; Neill, D. B. ; Padman, R.</creatorcontrib><description>Here, the authors describe and evaluate a new information-visualization method and prototype software tool that support risk assessment for negative health outcomes. Their framework uses principal component analysis and linear discriminant analysis to plot high-dimensional patient data in 2D. It also incorporates interactive visualization techniques to aid the identification of high versus low risk patients, critical risk factors, and the estimated effect of hypothetical interventions on the likelihood of negative outcomes. The authors quantitatively evaluated the visualization method using a secondary dataset describing 588 people with diabetes and their estimated future risk of heart attack. Their results show that the method visually classifies high- and low-risk people with accuracy that's similar to other common statistical methods. The framework also provides an interactive, visualization-based tool for clinicians to explore the nuances of their patients' data and disease risk.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2012.112</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Chronic illnesses ; Computer science; control theory; systems ; Datasets ; dimensionality reduction ; Discriminant analysis ; Diseases ; Exact sciences and technology ; healthcare ; Heart attacks ; Information technology ; information visualization ; Medical information processing ; Medical services ; Methods ; Pattern recognition. Digital image processing. Computational geometry ; Risk assessment ; Risk factors ; Software development ; Statistical methods ; Visualization</subject><ispartof>IEEE intelligent systems, 2012-11, Vol.27 (6), p.81-85</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-da73909f7b894d779591b4b12dedead206997200f70fabdf1511f278d3883aa63</citedby><cites>FETCH-LOGICAL-c417t-da73909f7b894d779591b4b12dedead206997200f70fabdf1511f278d3883aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6365201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6365201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26702252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Harle, C. A.</creatorcontrib><creatorcontrib>Neill, D. B.</creatorcontrib><creatorcontrib>Padman, R.</creatorcontrib><title>Information Visualization for Chronic Disease Risk Assessment</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Here, the authors describe and evaluate a new information-visualization method and prototype software tool that support risk assessment for negative health outcomes. Their framework uses principal component analysis and linear discriminant analysis to plot high-dimensional patient data in 2D. It also incorporates interactive visualization techniques to aid the identification of high versus low risk patients, critical risk factors, and the estimated effect of hypothetical interventions on the likelihood of negative outcomes. The authors quantitatively evaluated the visualization method using a secondary dataset describing 588 people with diabetes and their estimated future risk of heart attack. Their results show that the method visually classifies high- and low-risk people with accuracy that's similar to other common statistical methods. The framework also provides an interactive, visualization-based tool for clinicians to explore the nuances of their patients' data and disease risk.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Chronic illnesses</subject><subject>Computer science; control theory; systems</subject><subject>Datasets</subject><subject>dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Diseases</subject><subject>Exact sciences and technology</subject><subject>healthcare</subject><subject>Heart attacks</subject><subject>Information technology</subject><subject>information visualization</subject><subject>Medical information processing</subject><subject>Medical services</subject><subject>Methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Software development</subject><subject>Statistical methods</subject><subject>Visualization</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkLtPwzAQxiMEEqWwsbFEQkgMpPjsxI4Hhqq8KhUh8VojJ7GFSx7Flwzw1-MoFQMT091397tPui8IjoHMAIi8fFg-zygB6hXdCSYgY4iAynjX98nQc0H3gwPENSGUEUgnwdWyMa2rVWfbJnyz2KvKfo_Kz8PFu2sbW4TXFrVCHT5Z_AjniBqx1k13GOwZVaE-2tZp8Hp787K4j1aPd8vFfBUVMYguKpVgkkgj8lTGpRAykZDHOdBSl1qVlHApBSXECGJUXhpIAAwVacnSlCnF2TQ4H303rv3sNXZZbbHQVaUa3faYAU0ZZzFI9g-UpzxhIiEePf2DrtveNf4RT1GQCUnFYHgxUoVrEZ022cbZWrmvDEg2xJ752LMhdq-ox8-2pgoLVRmnmsLi7w3lglCaDNzJyFmt9e-aM554K_YDJ2OIWQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Harle, C. A.</creator><creator>Neill, D. B.</creator><creator>Padman, R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7T2</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20121101</creationdate><title>Information Visualization for Chronic Disease Risk Assessment</title><author>Harle, C. A. ; Neill, D. B. ; Padman, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-da73909f7b894d779591b4b12dedead206997200f70fabdf1511f278d3883aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Chronic illnesses</topic><topic>Computer science; control theory; systems</topic><topic>Datasets</topic><topic>dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Diseases</topic><topic>Exact sciences and technology</topic><topic>healthcare</topic><topic>Heart attacks</topic><topic>Information technology</topic><topic>information visualization</topic><topic>Medical information processing</topic><topic>Medical services</topic><topic>Methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Software development</topic><topic>Statistical methods</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harle, C. A.</creatorcontrib><creatorcontrib>Neill, D. B.</creatorcontrib><creatorcontrib>Padman, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harle, C. A.</au><au>Neill, D. B.</au><au>Padman, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Visualization for Chronic Disease Risk Assessment</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>27</volume><issue>6</issue><spage>81</spage><epage>85</epage><pages>81-85</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Here, the authors describe and evaluate a new information-visualization method and prototype software tool that support risk assessment for negative health outcomes. Their framework uses principal component analysis and linear discriminant analysis to plot high-dimensional patient data in 2D. It also incorporates interactive visualization techniques to aid the identification of high versus low risk patients, critical risk factors, and the estimated effect of hypothetical interventions on the likelihood of negative outcomes. The authors quantitatively evaluated the visualization method using a secondary dataset describing 588 people with diabetes and their estimated future risk of heart attack. Their results show that the method visually classifies high- and low-risk people with accuracy that's similar to other common statistical methods. The framework also provides an interactive, visualization-based tool for clinicians to explore the nuances of their patients' data and disease risk.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/MIS.2012.112</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2012-11, Vol.27 (6), p.81-85 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_proquest_journals_1221950873 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Chronic illnesses Computer science control theory systems Datasets dimensionality reduction Discriminant analysis Diseases Exact sciences and technology healthcare Heart attacks Information technology information visualization Medical information processing Medical services Methods Pattern recognition. Digital image processing. Computational geometry Risk assessment Risk factors Software development Statistical methods Visualization |
title | Information Visualization for Chronic Disease Risk Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Visualization%20for%20Chronic%20Disease%20Risk%20Assessment&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Harle,%20C.%20A.&rft.date=2012-11-01&rft.volume=27&rft.issue=6&rft.spage=81&rft.epage=85&rft.pages=81-85&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2012.112&rft_dat=%3Cproquest_RIE%3E1268653750%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221950873&rft_id=info:pmid/&rft_ieee_id=6365201&rfr_iscdi=true |