Efficient Boundary Extraction of BSP Solids Based on Clipping Operations

We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2013-01, Vol.19 (1), p.16-29
Hauptverfasser: Wang, C. C. L., Manocha, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 16
container_title IEEE transactions on visualization and computer graphics
container_volume 19
creator Wang, C. C. L.
Manocha, D.
description We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.
doi_str_mv 10.1109/TVCG.2012.104
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1220967655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6185541</ieee_id><sourcerecordid>2828997531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</originalsourceid><addsrcrecordid>eNqF0UtLw0AQB_BFFB_VoydBAl68pM7sM3u0pbZCQcHqNeSxKytpErMJ6Ld3Q9WDF0-7zPwYmPkTco4wRQR9s3mZL6cUkE4R-B45Rs0xBgFyP_xBqZhKKo_IifdvAMh5og_JEaUCEg30mKwW1rrCmbqPZs1Ql1n3GS0--i4retfUUWOj2dNj9NRUrvTRLPOmjEJ5Xrm2dfVr9NCaLhulPyUHNqu8Oft-J-T5brGZr-L1w_J-fruOC6Z4H-cZKyhalgFNVCLKHKyQlJaaARfailxKTJQssISwhOaaWQuCWp7kitPCsgm53s1tu-Z9ML5Pt84Xpqqy2jSDT1EhCg7I2P-USqlQMDXSqz_0rRm6OiwSFAUtlRQiqHiniq7xvjM2bTu3DSdLEdIxjXRMIx3TCBUe_OX31CHfmvJX_5w_gIsdcMaY33a4gBAc2RdDrooM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220967655</pqid></control><display><type>article</type><title>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, C. C. L. ; Manocha, D.</creator><creatorcontrib>Wang, C. C. L. ; Manocha, D.</creatorcontrib><description>We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.104</identifier><identifier>PMID: 22508902</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Arithmetic ; B-rep approximation ; binary space partition tree ; Boolean algebra ; Boolean operations ; Boundaries ; BSP solids ; BSP to B-rep conversion ; Clipping ; clipping algorithm ; clipping operations ; Computational modeling ; efficient ; efficient boundary extraction ; Face ; finite precision arithmetic ; Floating point arithmetic ; geometric processing ; logical operations ; manifold surface ; mesh generation ; mesh reconstruction ; model repair ; Octrees ; Partitions ; point based representations ; Polygonization ; polygonization algorithm ; polygonization method ; Robustness ; Solid modeling ; solid modelling ; Solids ; spatial convex partition ; Studies ; Topology ; trees (mathematics) ; volumetric cells</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-01, Vol.19 (1), p.16-29</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</citedby><cites>FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6185541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6185541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22508902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, C. C. L.</creatorcontrib><creatorcontrib>Manocha, D.</creatorcontrib><title>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Arithmetic</subject><subject>B-rep approximation</subject><subject>binary space partition tree</subject><subject>Boolean algebra</subject><subject>Boolean operations</subject><subject>Boundaries</subject><subject>BSP solids</subject><subject>BSP to B-rep conversion</subject><subject>Clipping</subject><subject>clipping algorithm</subject><subject>clipping operations</subject><subject>Computational modeling</subject><subject>efficient</subject><subject>efficient boundary extraction</subject><subject>Face</subject><subject>finite precision arithmetic</subject><subject>Floating point arithmetic</subject><subject>geometric processing</subject><subject>logical operations</subject><subject>manifold surface</subject><subject>mesh generation</subject><subject>mesh reconstruction</subject><subject>model repair</subject><subject>Octrees</subject><subject>Partitions</subject><subject>point based representations</subject><subject>Polygonization</subject><subject>polygonization algorithm</subject><subject>polygonization method</subject><subject>Robustness</subject><subject>Solid modeling</subject><subject>solid modelling</subject><subject>Solids</subject><subject>spatial convex partition</subject><subject>Studies</subject><subject>Topology</subject><subject>trees (mathematics)</subject><subject>volumetric cells</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLw0AQB_BFFB_VoydBAl68pM7sM3u0pbZCQcHqNeSxKytpErMJ6Ld3Q9WDF0-7zPwYmPkTco4wRQR9s3mZL6cUkE4R-B45Rs0xBgFyP_xBqZhKKo_IifdvAMh5og_JEaUCEg30mKwW1rrCmbqPZs1Ql1n3GS0--i4retfUUWOj2dNj9NRUrvTRLPOmjEJ5Xrm2dfVr9NCaLhulPyUHNqu8Oft-J-T5brGZr-L1w_J-fruOC6Z4H-cZKyhalgFNVCLKHKyQlJaaARfailxKTJQssISwhOaaWQuCWp7kitPCsgm53s1tu-Z9ML5Pt84Xpqqy2jSDT1EhCg7I2P-USqlQMDXSqz_0rRm6OiwSFAUtlRQiqHiniq7xvjM2bTu3DSdLEdIxjXRMIx3TCBUe_OX31CHfmvJX_5w_gIsdcMaY33a4gBAc2RdDrooM</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Wang, C. C. L.</creator><creator>Manocha, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</title><author>Wang, C. C. L. ; Manocha, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Arithmetic</topic><topic>B-rep approximation</topic><topic>binary space partition tree</topic><topic>Boolean algebra</topic><topic>Boolean operations</topic><topic>Boundaries</topic><topic>BSP solids</topic><topic>BSP to B-rep conversion</topic><topic>Clipping</topic><topic>clipping algorithm</topic><topic>clipping operations</topic><topic>Computational modeling</topic><topic>efficient</topic><topic>efficient boundary extraction</topic><topic>Face</topic><topic>finite precision arithmetic</topic><topic>Floating point arithmetic</topic><topic>geometric processing</topic><topic>logical operations</topic><topic>manifold surface</topic><topic>mesh generation</topic><topic>mesh reconstruction</topic><topic>model repair</topic><topic>Octrees</topic><topic>Partitions</topic><topic>point based representations</topic><topic>Polygonization</topic><topic>polygonization algorithm</topic><topic>polygonization method</topic><topic>Robustness</topic><topic>Solid modeling</topic><topic>solid modelling</topic><topic>Solids</topic><topic>spatial convex partition</topic><topic>Studies</topic><topic>Topology</topic><topic>trees (mathematics)</topic><topic>volumetric cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, C. C. L.</creatorcontrib><creatorcontrib>Manocha, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, C. C. L.</au><au>Manocha, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-01</date><risdate>2013</risdate><volume>19</volume><issue>1</issue><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22508902</pmid><doi>10.1109/TVCG.2012.104</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2013-01, Vol.19 (1), p.16-29
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_1220967655
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Arithmetic
B-rep approximation
binary space partition tree
Boolean algebra
Boolean operations
Boundaries
BSP solids
BSP to B-rep conversion
Clipping
clipping algorithm
clipping operations
Computational modeling
efficient
efficient boundary extraction
Face
finite precision arithmetic
Floating point arithmetic
geometric processing
logical operations
manifold surface
mesh generation
mesh reconstruction
model repair
Octrees
Partitions
point based representations
Polygonization
polygonization algorithm
polygonization method
Robustness
Solid modeling
solid modelling
Solids
spatial convex partition
Studies
Topology
trees (mathematics)
volumetric cells
title Efficient Boundary Extraction of BSP Solids Based on Clipping Operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Boundary%20Extraction%20of%20BSP%20Solids%20Based%20on%20Clipping%20Operations&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Wang,%20C.%20C.%20L.&rft.date=2013-01&rft.volume=19&rft.issue=1&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.104&rft_dat=%3Cproquest_RIE%3E2828997531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220967655&rft_id=info:pmid/22508902&rft_ieee_id=6185541&rfr_iscdi=true