Efficient Boundary Extraction of BSP Solids Based on Clipping Operations
We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2013-01, Vol.19 (1), p.16-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 19 |
creator | Wang, C. C. L. Manocha, D. |
description | We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction. |
doi_str_mv | 10.1109/TVCG.2012.104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1220967655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6185541</ieee_id><sourcerecordid>2828997531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</originalsourceid><addsrcrecordid>eNqF0UtLw0AQB_BFFB_VoydBAl68pM7sM3u0pbZCQcHqNeSxKytpErMJ6Ld3Q9WDF0-7zPwYmPkTco4wRQR9s3mZL6cUkE4R-B45Rs0xBgFyP_xBqZhKKo_IifdvAMh5og_JEaUCEg30mKwW1rrCmbqPZs1Ql1n3GS0--i4retfUUWOj2dNj9NRUrvTRLPOmjEJ5Xrm2dfVr9NCaLhulPyUHNqu8Oft-J-T5brGZr-L1w_J-fruOC6Z4H-cZKyhalgFNVCLKHKyQlJaaARfailxKTJQssISwhOaaWQuCWp7kitPCsgm53s1tu-Z9ML5Pt84Xpqqy2jSDT1EhCg7I2P-USqlQMDXSqz_0rRm6OiwSFAUtlRQiqHiniq7xvjM2bTu3DSdLEdIxjXRMIx3TCBUe_OX31CHfmvJX_5w_gIsdcMaY33a4gBAc2RdDrooM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220967655</pqid></control><display><type>article</type><title>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, C. C. L. ; Manocha, D.</creator><creatorcontrib>Wang, C. C. L. ; Manocha, D.</creatorcontrib><description>We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.104</identifier><identifier>PMID: 22508902</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Arithmetic ; B-rep approximation ; binary space partition tree ; Boolean algebra ; Boolean operations ; Boundaries ; BSP solids ; BSP to B-rep conversion ; Clipping ; clipping algorithm ; clipping operations ; Computational modeling ; efficient ; efficient boundary extraction ; Face ; finite precision arithmetic ; Floating point arithmetic ; geometric processing ; logical operations ; manifold surface ; mesh generation ; mesh reconstruction ; model repair ; Octrees ; Partitions ; point based representations ; Polygonization ; polygonization algorithm ; polygonization method ; Robustness ; Solid modeling ; solid modelling ; Solids ; spatial convex partition ; Studies ; Topology ; trees (mathematics) ; volumetric cells</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-01, Vol.19 (1), p.16-29</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</citedby><cites>FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6185541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6185541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22508902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, C. C. L.</creatorcontrib><creatorcontrib>Manocha, D.</creatorcontrib><title>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Arithmetic</subject><subject>B-rep approximation</subject><subject>binary space partition tree</subject><subject>Boolean algebra</subject><subject>Boolean operations</subject><subject>Boundaries</subject><subject>BSP solids</subject><subject>BSP to B-rep conversion</subject><subject>Clipping</subject><subject>clipping algorithm</subject><subject>clipping operations</subject><subject>Computational modeling</subject><subject>efficient</subject><subject>efficient boundary extraction</subject><subject>Face</subject><subject>finite precision arithmetic</subject><subject>Floating point arithmetic</subject><subject>geometric processing</subject><subject>logical operations</subject><subject>manifold surface</subject><subject>mesh generation</subject><subject>mesh reconstruction</subject><subject>model repair</subject><subject>Octrees</subject><subject>Partitions</subject><subject>point based representations</subject><subject>Polygonization</subject><subject>polygonization algorithm</subject><subject>polygonization method</subject><subject>Robustness</subject><subject>Solid modeling</subject><subject>solid modelling</subject><subject>Solids</subject><subject>spatial convex partition</subject><subject>Studies</subject><subject>Topology</subject><subject>trees (mathematics)</subject><subject>volumetric cells</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLw0AQB_BFFB_VoydBAl68pM7sM3u0pbZCQcHqNeSxKytpErMJ6Ld3Q9WDF0-7zPwYmPkTco4wRQR9s3mZL6cUkE4R-B45Rs0xBgFyP_xBqZhKKo_IifdvAMh5og_JEaUCEg30mKwW1rrCmbqPZs1Ql1n3GS0--i4retfUUWOj2dNj9NRUrvTRLPOmjEJ5Xrm2dfVr9NCaLhulPyUHNqu8Oft-J-T5brGZr-L1w_J-fruOC6Z4H-cZKyhalgFNVCLKHKyQlJaaARfailxKTJQssISwhOaaWQuCWp7kitPCsgm53s1tu-Z9ML5Pt84Xpqqy2jSDT1EhCg7I2P-USqlQMDXSqz_0rRm6OiwSFAUtlRQiqHiniq7xvjM2bTu3DSdLEdIxjXRMIx3TCBUe_OX31CHfmvJX_5w_gIsdcMaY33a4gBAc2RdDrooM</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Wang, C. C. L.</creator><creator>Manocha, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</title><author>Wang, C. C. L. ; Manocha, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-ba3c21f3a028785db0f5622d930459f5b661876c1d00509493ff052f48b742cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Arithmetic</topic><topic>B-rep approximation</topic><topic>binary space partition tree</topic><topic>Boolean algebra</topic><topic>Boolean operations</topic><topic>Boundaries</topic><topic>BSP solids</topic><topic>BSP to B-rep conversion</topic><topic>Clipping</topic><topic>clipping algorithm</topic><topic>clipping operations</topic><topic>Computational modeling</topic><topic>efficient</topic><topic>efficient boundary extraction</topic><topic>Face</topic><topic>finite precision arithmetic</topic><topic>Floating point arithmetic</topic><topic>geometric processing</topic><topic>logical operations</topic><topic>manifold surface</topic><topic>mesh generation</topic><topic>mesh reconstruction</topic><topic>model repair</topic><topic>Octrees</topic><topic>Partitions</topic><topic>point based representations</topic><topic>Polygonization</topic><topic>polygonization algorithm</topic><topic>polygonization method</topic><topic>Robustness</topic><topic>Solid modeling</topic><topic>solid modelling</topic><topic>Solids</topic><topic>spatial convex partition</topic><topic>Studies</topic><topic>Topology</topic><topic>trees (mathematics)</topic><topic>volumetric cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, C. C. L.</creatorcontrib><creatorcontrib>Manocha, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, C. C. L.</au><au>Manocha, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Boundary Extraction of BSP Solids Based on Clipping Operations</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-01</date><risdate>2013</risdate><volume>19</volume><issue>1</issue><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22508902</pmid><doi>10.1109/TVCG.2012.104</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2013-01, Vol.19 (1), p.16-29 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_1220967655 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation Arithmetic B-rep approximation binary space partition tree Boolean algebra Boolean operations Boundaries BSP solids BSP to B-rep conversion Clipping clipping algorithm clipping operations Computational modeling efficient efficient boundary extraction Face finite precision arithmetic Floating point arithmetic geometric processing logical operations manifold surface mesh generation mesh reconstruction model repair Octrees Partitions point based representations Polygonization polygonization algorithm polygonization method Robustness Solid modeling solid modelling Solids spatial convex partition Studies Topology trees (mathematics) volumetric cells |
title | Efficient Boundary Extraction of BSP Solids Based on Clipping Operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Boundary%20Extraction%20of%20BSP%20Solids%20Based%20on%20Clipping%20Operations&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Wang,%20C.%20C.%20L.&rft.date=2013-01&rft.volume=19&rft.issue=1&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.104&rft_dat=%3Cproquest_RIE%3E2828997531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220967655&rft_id=info:pmid/22508902&rft_ieee_id=6185541&rfr_iscdi=true |