Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint
Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently comp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2012-12, Vol.57 (12), p.3078-3089 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3089 |
---|---|
container_issue | 12 |
container_start_page | 3078 |
container_title | IEEE transactions on automatic control |
container_volume | 57 |
creator | Blondel, V. D. Gurbuzbalaban, M. Megretski, A. Overton, M. L. |
description | Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems. |
doi_str_mv | 10.1109/TAC.2012.2202069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1220766253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6209388</ieee_id><sourcerecordid>2828235461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</originalsourceid><addsrcrecordid>eNpdkEGLFDEQhYMoOK7eBS8BEbz0WKlOp5PjMOy6CwsjuiJ4aWp6EsyS7oxJBhx_vRlm2IOnR1V971E8xt4KWAoB5tPDar1EELhEBARlnrGF6DrdYIftc7YAELoxqNVL9irnxzoqKcWC_bz-sw9-9IV_i-FQfJwzdzHxrzEWvtkXP_m_dFrz6DjxLzEc5zh5CvyGJh-O_Icvv_hmtnzlnK-yrgklkZ_La_bCUcj2zUWv2Peb64f1bXO_-Xy3Xt03Y2tUadA46GDbCynlbic72mornbQA0gA467Y7gtFq7Ds05DTJ0TjZ615Y6neG2iv28Zy7T_H3weYyTD6PNgSabTzkQaBSvWgNioq-_w99jIc01-8qhdArhV1bKThTY4o5J-uGffITpeMgYDiVPdSyh1PZw6XsavlwCaY8UnCJ5tHnJx-qXrUAULl3Z85ba5_OCsG0Wrf_AFbjhwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220766253</pqid></control><display><type>article</type><title>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</title><source>IEEE Electronic Library (IEL)</source><creator>Blondel, V. D. ; Gurbuzbalaban, M. ; Megretski, A. ; Overton, M. L.</creator><creatorcontrib>Blondel, V. D. ; Gurbuzbalaban, M. ; Megretski, A. ; Overton, M. L.</creatorcontrib><description>Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2202069</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Approximation methods ; Automatic control ; Computation ; Computer science; control theory; systems ; Construction ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Optimization ; Output feedback ; Polynomials ; Roots ; Stability</subject><ispartof>IEEE transactions on automatic control, 2012-12, Vol.57 (12), p.3078-3089</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</citedby><cites>FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6209388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6209388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26763000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blondel, V. D.</creatorcontrib><creatorcontrib>Gurbuzbalaban, M.</creatorcontrib><creatorcontrib>Megretski, A.</creatorcontrib><creatorcontrib>Overton, M. L.</creatorcontrib><title>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Automatic control</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Output feedback</subject><subject>Polynomials</subject><subject>Roots</subject><subject>Stability</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEGLFDEQhYMoOK7eBS8BEbz0WKlOp5PjMOy6CwsjuiJ4aWp6EsyS7oxJBhx_vRlm2IOnR1V971E8xt4KWAoB5tPDar1EELhEBARlnrGF6DrdYIftc7YAELoxqNVL9irnxzoqKcWC_bz-sw9-9IV_i-FQfJwzdzHxrzEWvtkXP_m_dFrz6DjxLzEc5zh5CvyGJh-O_Icvv_hmtnzlnK-yrgklkZ_La_bCUcj2zUWv2Peb64f1bXO_-Xy3Xt03Y2tUadA46GDbCynlbic72mornbQA0gA467Y7gtFq7Ds05DTJ0TjZ615Y6neG2iv28Zy7T_H3weYyTD6PNgSabTzkQaBSvWgNioq-_w99jIc01-8qhdArhV1bKThTY4o5J-uGffITpeMgYDiVPdSyh1PZw6XsavlwCaY8UnCJ5tHnJx-qXrUAULl3Z85ba5_OCsG0Wrf_AFbjhwQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Blondel, V. D.</creator><creator>Gurbuzbalaban, M.</creator><creator>Megretski, A.</creator><creator>Overton, M. L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20121201</creationdate><title>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</title><author>Blondel, V. D. ; Gurbuzbalaban, M. ; Megretski, A. ; Overton, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Automatic control</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Output feedback</topic><topic>Polynomials</topic><topic>Roots</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blondel, V. D.</creatorcontrib><creatorcontrib>Gurbuzbalaban, M.</creatorcontrib><creatorcontrib>Megretski, A.</creatorcontrib><creatorcontrib>Overton, M. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blondel, V. D.</au><au>Gurbuzbalaban, M.</au><au>Megretski, A.</au><au>Overton, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>57</volume><issue>12</issue><spage>3078</spage><epage>3089</epage><pages>3078-3089</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2202069</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2012-12, Vol.57 (12), p.3078-3089 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_1220766253 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Approximation Approximation methods Automatic control Computation Computer science control theory systems Construction Control system synthesis Control theory. Systems Exact sciences and technology Mathematical analysis Mathematical models Optimization Output feedback Polynomials Roots Stability |
title | Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Solutions%20for%20Root%20Optimization%20of%20a%20Polynomial%20Family%20With%20One%20Affine%20Constraint&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Blondel,%20V.%20D.&rft.date=2012-12-01&rft.volume=57&rft.issue=12&rft.spage=3078&rft.epage=3089&rft.pages=3078-3089&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2202069&rft_dat=%3Cproquest_RIE%3E2828235461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220766253&rft_id=info:pmid/&rft_ieee_id=6209388&rfr_iscdi=true |