Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint

Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2012-12, Vol.57 (12), p.3078-3089
Hauptverfasser: Blondel, V. D., Gurbuzbalaban, M., Megretski, A., Overton, M. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3089
container_issue 12
container_start_page 3078
container_title IEEE transactions on automatic control
container_volume 57
creator Blondel, V. D.
Gurbuzbalaban, M.
Megretski, A.
Overton, M. L.
description Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.
doi_str_mv 10.1109/TAC.2012.2202069
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1220766253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6209388</ieee_id><sourcerecordid>2828235461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</originalsourceid><addsrcrecordid>eNpdkEGLFDEQhYMoOK7eBS8BEbz0WKlOp5PjMOy6CwsjuiJ4aWp6EsyS7oxJBhx_vRlm2IOnR1V971E8xt4KWAoB5tPDar1EELhEBARlnrGF6DrdYIftc7YAELoxqNVL9irnxzoqKcWC_bz-sw9-9IV_i-FQfJwzdzHxrzEWvtkXP_m_dFrz6DjxLzEc5zh5CvyGJh-O_Icvv_hmtnzlnK-yrgklkZ_La_bCUcj2zUWv2Peb64f1bXO_-Xy3Xt03Y2tUadA46GDbCynlbic72mornbQA0gA467Y7gtFq7Ds05DTJ0TjZ615Y6neG2iv28Zy7T_H3weYyTD6PNgSabTzkQaBSvWgNioq-_w99jIc01-8qhdArhV1bKThTY4o5J-uGffITpeMgYDiVPdSyh1PZw6XsavlwCaY8UnCJ5tHnJx-qXrUAULl3Z85ba5_OCsG0Wrf_AFbjhwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220766253</pqid></control><display><type>article</type><title>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</title><source>IEEE Electronic Library (IEL)</source><creator>Blondel, V. D. ; Gurbuzbalaban, M. ; Megretski, A. ; Overton, M. L.</creator><creatorcontrib>Blondel, V. D. ; Gurbuzbalaban, M. ; Megretski, A. ; Overton, M. L.</creatorcontrib><description>Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2202069</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Approximation methods ; Automatic control ; Computation ; Computer science; control theory; systems ; Construction ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Optimization ; Output feedback ; Polynomials ; Roots ; Stability</subject><ispartof>IEEE transactions on automatic control, 2012-12, Vol.57 (12), p.3078-3089</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</citedby><cites>FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6209388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6209388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26763000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blondel, V. D.</creatorcontrib><creatorcontrib>Gurbuzbalaban, M.</creatorcontrib><creatorcontrib>Megretski, A.</creatorcontrib><creatorcontrib>Overton, M. L.</creatorcontrib><title>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Automatic control</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Output feedback</subject><subject>Polynomials</subject><subject>Roots</subject><subject>Stability</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEGLFDEQhYMoOK7eBS8BEbz0WKlOp5PjMOy6CwsjuiJ4aWp6EsyS7oxJBhx_vRlm2IOnR1V971E8xt4KWAoB5tPDar1EELhEBARlnrGF6DrdYIftc7YAELoxqNVL9irnxzoqKcWC_bz-sw9-9IV_i-FQfJwzdzHxrzEWvtkXP_m_dFrz6DjxLzEc5zh5CvyGJh-O_Icvv_hmtnzlnK-yrgklkZ_La_bCUcj2zUWv2Peb64f1bXO_-Xy3Xt03Y2tUadA46GDbCynlbic72mornbQA0gA467Y7gtFq7Ds05DTJ0TjZ615Y6neG2iv28Zy7T_H3weYyTD6PNgSabTzkQaBSvWgNioq-_w99jIc01-8qhdArhV1bKThTY4o5J-uGffITpeMgYDiVPdSyh1PZw6XsavlwCaY8UnCJ5tHnJx-qXrUAULl3Z85ba5_OCsG0Wrf_AFbjhwQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Blondel, V. D.</creator><creator>Gurbuzbalaban, M.</creator><creator>Megretski, A.</creator><creator>Overton, M. L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20121201</creationdate><title>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</title><author>Blondel, V. D. ; Gurbuzbalaban, M. ; Megretski, A. ; Overton, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-29f050b71444dd45ab8e4f4e004900fefbda0ce827529af8a4c9f47871ea7d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Automatic control</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Output feedback</topic><topic>Polynomials</topic><topic>Roots</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blondel, V. D.</creatorcontrib><creatorcontrib>Gurbuzbalaban, M.</creatorcontrib><creatorcontrib>Megretski, A.</creatorcontrib><creatorcontrib>Overton, M. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blondel, V. D.</au><au>Gurbuzbalaban, M.</au><au>Megretski, A.</au><au>Overton, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>57</volume><issue>12</issue><spage>3078</spage><epage>3089</epage><pages>3078-3089</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2202069</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2012-12, Vol.57 (12), p.3078-3089
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_1220766253
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation
Approximation methods
Automatic control
Computation
Computer science
control theory
systems
Construction
Control system synthesis
Control theory. Systems
Exact sciences and technology
Mathematical analysis
Mathematical models
Optimization
Output feedback
Polynomials
Roots
Stability
title Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Solutions%20for%20Root%20Optimization%20of%20a%20Polynomial%20Family%20With%20One%20Affine%20Constraint&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Blondel,%20V.%20D.&rft.date=2012-12-01&rft.volume=57&rft.issue=12&rft.spage=3078&rft.epage=3089&rft.pages=3078-3089&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2202069&rft_dat=%3Cproquest_RIE%3E2828235461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220766253&rft_id=info:pmid/&rft_ieee_id=6209388&rfr_iscdi=true