A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy
This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2012-12, Vol.61 (12), p.3303-3311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3311 |
---|---|
container_issue | 12 |
container_start_page | 3303 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 61 |
creator | Lindahl, Peter A. Cornachione, Matthew A. Shaw, Steven R. |
description | This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz). |
doi_str_mv | 10.1109/TIM.2012.2210457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1171331065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6276256</ieee_id><sourcerecordid>2819436021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqWwI7FEYmFJubNrOx6rUqBSgaFlthznoqZKmjROh_57UloxMN1w7zt99xi7RxghgnlezT9GHJCPOEcYS33BBiiljo1S_JINADCJzViqa3YTwgYAtBrrAfucRKuiovilrlyxjRbkQhctd3vXUogmTdPWzq-jro5mJfmurf2aqsK7MppXDWVu6ylaNr-b4OvmcMuuclcGujvPIft-na2m7_Hi620-nSxiL6TuYmNyysgZhTLjCQCZRAD0TV1qMHOpN1447ZUH6XOuMkzyJFOJSF2qUoeJGLKn092-4G5PobNVETyVpdtSvQ8WlcaxFJyLHn38h27qfbvt21lEjUIgKNlTcKJ8_0loKbdNW1SuPVgEexRse8H2KNieBfeRh1OkIKI_XHGtuFTiB2Uhdg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171331065</pqid></control><display><type>article</type><title>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</title><source>IEEE Electronic Library Online</source><creator>Lindahl, Peter A. ; Cornachione, Matthew A. ; Shaw, Steven R.</creator><creatorcontrib>Lindahl, Peter A. ; Cornachione, Matthew A. ; Shaw, Steven R.</creatorcontrib><description>This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2210457</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Batteries ; Battery ; Devices ; Electrochemical devices ; Electrochemical impedance spectroscopy ; electrochemical impedance spectroscopy (EIS) ; Fuel cells ; Impedance measurement ; Instrumentation ; Least squares method ; Least squares methods ; Photovoltaic cells ; Solid oxide fuel cells ; Studies ; Supercapacitors ; Voltage ; Waveforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2012-12, Vol.61 (12), p.3303-3311</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</citedby><cites>FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6276256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6276256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Cornachione, Matthew A.</creatorcontrib><creatorcontrib>Shaw, Steven R.</creatorcontrib><title>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).</description><subject>Accuracy</subject><subject>Batteries</subject><subject>Battery</subject><subject>Devices</subject><subject>Electrochemical devices</subject><subject>Electrochemical impedance spectroscopy</subject><subject>electrochemical impedance spectroscopy (EIS)</subject><subject>Fuel cells</subject><subject>Impedance measurement</subject><subject>Instrumentation</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Photovoltaic cells</subject><subject>Solid oxide fuel cells</subject><subject>Studies</subject><subject>Supercapacitors</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EEqWwI7FEYmFJubNrOx6rUqBSgaFlthznoqZKmjROh_57UloxMN1w7zt99xi7RxghgnlezT9GHJCPOEcYS33BBiiljo1S_JINADCJzViqa3YTwgYAtBrrAfucRKuiovilrlyxjRbkQhctd3vXUogmTdPWzq-jro5mJfmurf2aqsK7MppXDWVu6ylaNr-b4OvmcMuuclcGujvPIft-na2m7_Hi620-nSxiL6TuYmNyysgZhTLjCQCZRAD0TV1qMHOpN1447ZUH6XOuMkzyJFOJSF2qUoeJGLKn092-4G5PobNVETyVpdtSvQ8WlcaxFJyLHn38h27qfbvt21lEjUIgKNlTcKJ8_0loKbdNW1SuPVgEexRse8H2KNieBfeRh1OkIKI_XHGtuFTiB2Uhdg0</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Lindahl, Peter A.</creator><creator>Cornachione, Matthew A.</creator><creator>Shaw, Steven R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121201</creationdate><title>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</title><author>Lindahl, Peter A. ; Cornachione, Matthew A. ; Shaw, Steven R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Batteries</topic><topic>Battery</topic><topic>Devices</topic><topic>Electrochemical devices</topic><topic>Electrochemical impedance spectroscopy</topic><topic>electrochemical impedance spectroscopy (EIS)</topic><topic>Fuel cells</topic><topic>Impedance measurement</topic><topic>Instrumentation</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Photovoltaic cells</topic><topic>Solid oxide fuel cells</topic><topic>Studies</topic><topic>Supercapacitors</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Cornachione, Matthew A.</creatorcontrib><creatorcontrib>Shaw, Steven R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lindahl, Peter A.</au><au>Cornachione, Matthew A.</au><au>Shaw, Steven R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>61</volume><issue>12</issue><spage>3303</spage><epage>3311</epage><pages>3303-3311</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2012.2210457</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2012-12, Vol.61 (12), p.3303-3311 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_1171331065 |
source | IEEE Electronic Library Online |
subjects | Accuracy Batteries Battery Devices Electrochemical devices Electrochemical impedance spectroscopy electrochemical impedance spectroscopy (EIS) Fuel cells Impedance measurement Instrumentation Least squares method Least squares methods Photovoltaic cells Solid oxide fuel cells Studies Supercapacitors Voltage Waveforms |
title | A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Time-Domain%20Least%20Squares%20Approach%20to%20Electrochemical%20Impedance%20Spectroscopy&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lindahl,%20Peter%20A.&rft.date=2012-12-01&rft.volume=61&rft.issue=12&rft.spage=3303&rft.epage=3311&rft.pages=3303-3311&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2210457&rft_dat=%3Cproquest_RIE%3E2819436021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171331065&rft_id=info:pmid/&rft_ieee_id=6276256&rfr_iscdi=true |