A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy

This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2012-12, Vol.61 (12), p.3303-3311
Hauptverfasser: Lindahl, Peter A., Cornachione, Matthew A., Shaw, Steven R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3311
container_issue 12
container_start_page 3303
container_title IEEE transactions on instrumentation and measurement
container_volume 61
creator Lindahl, Peter A.
Cornachione, Matthew A.
Shaw, Steven R.
description This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).
doi_str_mv 10.1109/TIM.2012.2210457
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1171331065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6276256</ieee_id><sourcerecordid>2819436021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqWwI7FEYmFJubNrOx6rUqBSgaFlthznoqZKmjROh_57UloxMN1w7zt99xi7RxghgnlezT9GHJCPOEcYS33BBiiljo1S_JINADCJzViqa3YTwgYAtBrrAfucRKuiovilrlyxjRbkQhctd3vXUogmTdPWzq-jro5mJfmurf2aqsK7MppXDWVu6ylaNr-b4OvmcMuuclcGujvPIft-na2m7_Hi620-nSxiL6TuYmNyysgZhTLjCQCZRAD0TV1qMHOpN1447ZUH6XOuMkzyJFOJSF2qUoeJGLKn092-4G5PobNVETyVpdtSvQ8WlcaxFJyLHn38h27qfbvt21lEjUIgKNlTcKJ8_0loKbdNW1SuPVgEexRse8H2KNieBfeRh1OkIKI_XHGtuFTiB2Uhdg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171331065</pqid></control><display><type>article</type><title>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</title><source>IEEE Electronic Library Online</source><creator>Lindahl, Peter A. ; Cornachione, Matthew A. ; Shaw, Steven R.</creator><creatorcontrib>Lindahl, Peter A. ; Cornachione, Matthew A. ; Shaw, Steven R.</creatorcontrib><description>This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2210457</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Batteries ; Battery ; Devices ; Electrochemical devices ; Electrochemical impedance spectroscopy ; electrochemical impedance spectroscopy (EIS) ; Fuel cells ; Impedance measurement ; Instrumentation ; Least squares method ; Least squares methods ; Photovoltaic cells ; Solid oxide fuel cells ; Studies ; Supercapacitors ; Voltage ; Waveforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2012-12, Vol.61 (12), p.3303-3311</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</citedby><cites>FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6276256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6276256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Cornachione, Matthew A.</creatorcontrib><creatorcontrib>Shaw, Steven R.</creatorcontrib><title>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).</description><subject>Accuracy</subject><subject>Batteries</subject><subject>Battery</subject><subject>Devices</subject><subject>Electrochemical devices</subject><subject>Electrochemical impedance spectroscopy</subject><subject>electrochemical impedance spectroscopy (EIS)</subject><subject>Fuel cells</subject><subject>Impedance measurement</subject><subject>Instrumentation</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Photovoltaic cells</subject><subject>Solid oxide fuel cells</subject><subject>Studies</subject><subject>Supercapacitors</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EEqWwI7FEYmFJubNrOx6rUqBSgaFlthznoqZKmjROh_57UloxMN1w7zt99xi7RxghgnlezT9GHJCPOEcYS33BBiiljo1S_JINADCJzViqa3YTwgYAtBrrAfucRKuiovilrlyxjRbkQhctd3vXUogmTdPWzq-jro5mJfmurf2aqsK7MppXDWVu6ylaNr-b4OvmcMuuclcGujvPIft-na2m7_Hi620-nSxiL6TuYmNyysgZhTLjCQCZRAD0TV1qMHOpN1447ZUH6XOuMkzyJFOJSF2qUoeJGLKn092-4G5PobNVETyVpdtSvQ8WlcaxFJyLHn38h27qfbvt21lEjUIgKNlTcKJ8_0loKbdNW1SuPVgEexRse8H2KNieBfeRh1OkIKI_XHGtuFTiB2Uhdg0</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Lindahl, Peter A.</creator><creator>Cornachione, Matthew A.</creator><creator>Shaw, Steven R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121201</creationdate><title>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</title><author>Lindahl, Peter A. ; Cornachione, Matthew A. ; Shaw, Steven R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-99fedea9615d2800e98300662ab91dabc9c3a7c6c05cf26d18f8d683bab6ba183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Batteries</topic><topic>Battery</topic><topic>Devices</topic><topic>Electrochemical devices</topic><topic>Electrochemical impedance spectroscopy</topic><topic>electrochemical impedance spectroscopy (EIS)</topic><topic>Fuel cells</topic><topic>Impedance measurement</topic><topic>Instrumentation</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Photovoltaic cells</topic><topic>Solid oxide fuel cells</topic><topic>Studies</topic><topic>Supercapacitors</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Cornachione, Matthew A.</creatorcontrib><creatorcontrib>Shaw, Steven R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lindahl, Peter A.</au><au>Cornachione, Matthew A.</au><au>Shaw, Steven R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>61</volume><issue>12</issue><spage>3303</spage><epage>3311</epage><pages>3303-3311</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2012.2210457</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2012-12, Vol.61 (12), p.3303-3311
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_1171331065
source IEEE Electronic Library Online
subjects Accuracy
Batteries
Battery
Devices
Electrochemical devices
Electrochemical impedance spectroscopy
electrochemical impedance spectroscopy (EIS)
Fuel cells
Impedance measurement
Instrumentation
Least squares method
Least squares methods
Photovoltaic cells
Solid oxide fuel cells
Studies
Supercapacitors
Voltage
Waveforms
title A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Time-Domain%20Least%20Squares%20Approach%20to%20Electrochemical%20Impedance%20Spectroscopy&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lindahl,%20Peter%20A.&rft.date=2012-12-01&rft.volume=61&rft.issue=12&rft.spage=3303&rft.epage=3311&rft.pages=3303-3311&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2210457&rft_dat=%3Cproquest_RIE%3E2819436021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171331065&rft_id=info:pmid/&rft_ieee_id=6276256&rfr_iscdi=true