Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon

In this paper the study of the tunneling current–voltage ( I – V ) characteristics of silicon surfaces with n - and p -type conductivity as a function of roughness in the presence of an adsorbed insulating layer of polyethylenimine (PEI) is presented. A new approach is proposed for analysis of the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2012-12, Vol.41 (12), p.3427-3435
Hauptverfasser: Malyar, I.V., Gorin, D.A., Stetsyura, S.V., Santer, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3435
container_issue 12
container_start_page 3427
container_title Journal of electronic materials
container_volume 41
creator Malyar, I.V.
Gorin, D.A.
Stetsyura, S.V.
Santer, S.
description In this paper the study of the tunneling current–voltage ( I – V ) characteristics of silicon surfaces with n - and p -type conductivity as a function of roughness in the presence of an adsorbed insulating layer of polyethylenimine (PEI) is presented. A new approach is proposed for analysis of the tunnel current–voltage characteristics of a metal–insulator–semiconductor structure based on the combination of two models (Simmons and Schottky). Such joint analysis demonstrates the effect of surface states and evaluates changes in the band bending and electron affinity after the deposition of the polyelectrolyte layer on the semiconductor surface. As a result, we are able to differentiate between the equilibrium tunnel barrier ( qφ 0 ) and the barrier height ( qφ B ). It is shown that the deposition of the polymer leads to an increase of the equilibrium tunnel barrier by more than 250 meV, irrespective of the roughness and the conductivity type of the silicon substrate. The PEI deposition also leads to changes in the barrier height (less than 25 meV) that are smaller than the equilibrium tunnel barrier changes, indicating pinning of the Fermi level by the electron surface states that are energetically close to it. These surface states can trap charge carriers, a process leading to the formation of a depletion region and band bending on the semiconductor surface. Moreover, the change in the barrier height q Δ φ B depends on the conductivity type of the semiconductor, being positive for n -type and negative for p -type, in contrast to q Δ φ 0 , which is positive for all substrates. The change is explained by capture of electrons preferably from the semiconductor space-charge region in the presence of a cationic polyelectrolyte, e.g., PEI.
doi_str_mv 10.1007/s11664-012-2266-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1170579132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818860461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5fa416fd6ae01b855c7fd4b72fd076424db8069bb6812ef7ad736a4b547c18c03</originalsourceid><addsrcrecordid>eNp1kL1uFDEUhS0EEkvgAegsURt8Z_wzW8IoEKQVRFoS0Vkez_XG0awdbE8xXR6AjjfkSZjVUtBQ3eZ85-h-hLwG_hY41-8KgFKCcWhY0yjFxBOyASlaBp36_pRseKuAyaaVz8mLUu45BwkdbMjPS-_RVZo8tfSLjWkMR4wlpGgnep2mBevdMmEMxxCR7uyCmaZI-zlnjPX346_bNFV7QNrf2WxdxRxKDa6cCq-WIYeR7mueXZ0zFvrBFhxP_D7Ew4Ssz0up69A-TMGl-JI883Yq-OrvvSA3Hy-_9Vds9_XT5_79jrlWbCuT3gpQflQWOQydlE77UQy68SPXSjRiHDqutsOgOmjQazvqVlkxSKEddI63F-TNufchpx8zlmru05zXj4sB0FzqLbTNmoJzyuVUSkZvHnI42rwY4OYk3Zylm1W6OUk3YmWaM1PWbDxg_qf5v9Af1ReIHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1170579132</pqid></control><display><type>article</type><title>Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon</title><source>SpringerLink Journals</source><creator>Malyar, I.V. ; Gorin, D.A. ; Stetsyura, S.V. ; Santer, S.</creator><creatorcontrib>Malyar, I.V. ; Gorin, D.A. ; Stetsyura, S.V. ; Santer, S.</creatorcontrib><description>In this paper the study of the tunneling current–voltage ( I – V ) characteristics of silicon surfaces with n - and p -type conductivity as a function of roughness in the presence of an adsorbed insulating layer of polyethylenimine (PEI) is presented. A new approach is proposed for analysis of the tunnel current–voltage characteristics of a metal–insulator–semiconductor structure based on the combination of two models (Simmons and Schottky). Such joint analysis demonstrates the effect of surface states and evaluates changes in the band bending and electron affinity after the deposition of the polyelectrolyte layer on the semiconductor surface. As a result, we are able to differentiate between the equilibrium tunnel barrier ( qφ 0 ) and the barrier height ( qφ B ). It is shown that the deposition of the polymer leads to an increase of the equilibrium tunnel barrier by more than 250 meV, irrespective of the roughness and the conductivity type of the silicon substrate. The PEI deposition also leads to changes in the barrier height (less than 25 meV) that are smaller than the equilibrium tunnel barrier changes, indicating pinning of the Fermi level by the electron surface states that are energetically close to it. These surface states can trap charge carriers, a process leading to the formation of a depletion region and band bending on the semiconductor surface. Moreover, the change in the barrier height q Δ φ B depends on the conductivity type of the semiconductor, being positive for n -type and negative for p -type, in contrast to q Δ φ 0 , which is positive for all substrates. The change is explained by capture of electrons preferably from the semiconductor space-charge region in the presence of a cationic polyelectrolyte, e.g., PEI.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-2266-4</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conductivity ; Electric properties ; Electrical engineering ; Electronics and Microelectronics ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Silicon ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2012-12, Vol.41 (12), p.3427-3435</ispartof><rights>TMS 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5fa416fd6ae01b855c7fd4b72fd076424db8069bb6812ef7ad736a4b547c18c03</citedby><cites>FETCH-LOGICAL-c349t-5fa416fd6ae01b855c7fd4b72fd076424db8069bb6812ef7ad736a4b547c18c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-012-2266-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-012-2266-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Malyar, I.V.</creatorcontrib><creatorcontrib>Gorin, D.A.</creatorcontrib><creatorcontrib>Stetsyura, S.V.</creatorcontrib><creatorcontrib>Santer, S.</creatorcontrib><title>Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this paper the study of the tunneling current–voltage ( I – V ) characteristics of silicon surfaces with n - and p -type conductivity as a function of roughness in the presence of an adsorbed insulating layer of polyethylenimine (PEI) is presented. A new approach is proposed for analysis of the tunnel current–voltage characteristics of a metal–insulator–semiconductor structure based on the combination of two models (Simmons and Schottky). Such joint analysis demonstrates the effect of surface states and evaluates changes in the band bending and electron affinity after the deposition of the polyelectrolyte layer on the semiconductor surface. As a result, we are able to differentiate between the equilibrium tunnel barrier ( qφ 0 ) and the barrier height ( qφ B ). It is shown that the deposition of the polymer leads to an increase of the equilibrium tunnel barrier by more than 250 meV, irrespective of the roughness and the conductivity type of the silicon substrate. The PEI deposition also leads to changes in the barrier height (less than 25 meV) that are smaller than the equilibrium tunnel barrier changes, indicating pinning of the Fermi level by the electron surface states that are energetically close to it. These surface states can trap charge carriers, a process leading to the formation of a depletion region and band bending on the semiconductor surface. Moreover, the change in the barrier height q Δ φ B depends on the conductivity type of the semiconductor, being positive for n -type and negative for p -type, in contrast to q Δ φ 0 , which is positive for all substrates. The change is explained by capture of electrons preferably from the semiconductor space-charge region in the presence of a cationic polyelectrolyte, e.g., PEI.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conductivity</subject><subject>Electric properties</subject><subject>Electrical engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Silicon</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kL1uFDEUhS0EEkvgAegsURt8Z_wzW8IoEKQVRFoS0Vkez_XG0awdbE8xXR6AjjfkSZjVUtBQ3eZ85-h-hLwG_hY41-8KgFKCcWhY0yjFxBOyASlaBp36_pRseKuAyaaVz8mLUu45BwkdbMjPS-_RVZo8tfSLjWkMR4wlpGgnep2mBevdMmEMxxCR7uyCmaZI-zlnjPX346_bNFV7QNrf2WxdxRxKDa6cCq-WIYeR7mueXZ0zFvrBFhxP_D7Ew4Ssz0up69A-TMGl-JI883Yq-OrvvSA3Hy-_9Vds9_XT5_79jrlWbCuT3gpQflQWOQydlE77UQy68SPXSjRiHDqutsOgOmjQazvqVlkxSKEddI63F-TNufchpx8zlmru05zXj4sB0FzqLbTNmoJzyuVUSkZvHnI42rwY4OYk3Zylm1W6OUk3YmWaM1PWbDxg_qf5v9Af1ReIHg</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Malyar, I.V.</creator><creator>Gorin, D.A.</creator><creator>Stetsyura, S.V.</creator><creator>Santer, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20121201</creationdate><title>Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon</title><author>Malyar, I.V. ; Gorin, D.A. ; Stetsyura, S.V. ; Santer, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5fa416fd6ae01b855c7fd4b72fd076424db8069bb6812ef7ad736a4b547c18c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conductivity</topic><topic>Electric properties</topic><topic>Electrical engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Silicon</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyar, I.V.</creatorcontrib><creatorcontrib>Gorin, D.A.</creatorcontrib><creatorcontrib>Stetsyura, S.V.</creatorcontrib><creatorcontrib>Santer, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malyar, I.V.</au><au>Gorin, D.A.</au><au>Stetsyura, S.V.</au><au>Santer, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>41</volume><issue>12</issue><spage>3427</spage><epage>3435</epage><pages>3427-3435</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>In this paper the study of the tunneling current–voltage ( I – V ) characteristics of silicon surfaces with n - and p -type conductivity as a function of roughness in the presence of an adsorbed insulating layer of polyethylenimine (PEI) is presented. A new approach is proposed for analysis of the tunnel current–voltage characteristics of a metal–insulator–semiconductor structure based on the combination of two models (Simmons and Schottky). Such joint analysis demonstrates the effect of surface states and evaluates changes in the band bending and electron affinity after the deposition of the polyelectrolyte layer on the semiconductor surface. As a result, we are able to differentiate between the equilibrium tunnel barrier ( qφ 0 ) and the barrier height ( qφ B ). It is shown that the deposition of the polymer leads to an increase of the equilibrium tunnel barrier by more than 250 meV, irrespective of the roughness and the conductivity type of the silicon substrate. The PEI deposition also leads to changes in the barrier height (less than 25 meV) that are smaller than the equilibrium tunnel barrier changes, indicating pinning of the Fermi level by the electron surface states that are energetically close to it. These surface states can trap charge carriers, a process leading to the formation of a depletion region and band bending on the semiconductor surface. Moreover, the change in the barrier height q Δ φ B depends on the conductivity type of the semiconductor, being positive for n -type and negative for p -type, in contrast to q Δ φ 0 , which is positive for all substrates. The change is explained by capture of electrons preferably from the semiconductor space-charge region in the presence of a cationic polyelectrolyte, e.g., PEI.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-2266-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2012-12, Vol.41 (12), p.3427-3435
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1170579132
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Conductivity
Electric properties
Electrical engineering
Electronics and Microelectronics
Instrumentation
Materials Science
Optical and Electronic Materials
Silicon
Solid State Physics
title Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20Nanodimensional%20Polyethylenimine%20Layer%20on%20Current%E2%80%93Voltage%20Characteristics%20of%20Hybrid%20Structures%20Based%20on%20Single-Crystal%20Silicon&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Malyar,%20I.V.&rft.date=2012-12-01&rft.volume=41&rft.issue=12&rft.spage=3427&rft.epage=3435&rft.pages=3427-3435&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-2266-4&rft_dat=%3Cproquest_cross%3E2818860461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1170579132&rft_id=info:pmid/&rfr_iscdi=true