Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data
We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotic...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2012-10, Vol.37 (10), p.1717-1753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1753 |
---|---|
container_issue | 10 |
container_start_page | 1717 |
container_title | Communications in partial differential equations |
container_volume | 37 |
creator | Kang, Kyungkuen Miura, Hideyuki Tsai, Tai-Peng |
description | We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity. |
doi_str_mv | 10.1080/03605302.2012.708082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1151593776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814587271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU5Z2_nzCZXSAlJVhApny3FicEnjYruUvD2JAle0h5VG38yuBqFLAhMCOVwDSyFhQCcUCJ1knZTTIzQiCaNRTBg7RqMeiXrmFJ15vwEgOeXxCD1PfbvdBRuM8thqvN7Kusbz71A5Yx1eyS9TuWgd7Efl8aK2B48PJrzjlW2iu0rJ1jRv-Nbum1K6Ft_JIM_RiZa1ry5-9xi9LuYvs4do-XT_OJsuI8VYEqKCMxoDT0odcyi4AkaLlFPGVVrmvZLqbqCUMckLBlma06SAUitQJXCWsjG6GnJ3zn7uKx_Exu5d050UhCQk4SzLeioeKOWs967SYufMtvtVEBB9eeKvPNGXJ4byOtvNYDONtm4rD9bVpQiyra3TTjbKeMH-TfgBCPV0IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151593776</pqid></control><display><type>article</type><title>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Kang, Kyungkuen ; Miura, Hideyuki ; Tsai, Tai-Peng</creator><creatorcontrib>Kang, Kyungkuen ; Miura, Hideyuki ; Tsai, Tai-Peng</creatorcontrib><description>We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2012.708082</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Discretely self-similar ; Exterior domain ; Fluid dynamics ; Landau solution ; Navier-Stokes equations ; Spatial asymptotics ; Stability ; Studies ; Time asymptotics ; Time-periodic</subject><ispartof>Communications in partial differential equations, 2012-10, Vol.37 (10), p.1717-1753</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</citedby><cites>FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03605302.2012.708082$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03605302.2012.708082$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Kang, Kyungkuen</creatorcontrib><creatorcontrib>Miura, Hideyuki</creatorcontrib><creatorcontrib>Tsai, Tai-Peng</creatorcontrib><title>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</title><title>Communications in partial differential equations</title><description>We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.</description><subject>Discretely self-similar</subject><subject>Exterior domain</subject><subject>Fluid dynamics</subject><subject>Landau solution</subject><subject>Navier-Stokes equations</subject><subject>Spatial asymptotics</subject><subject>Stability</subject><subject>Studies</subject><subject>Time asymptotics</subject><subject>Time-periodic</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU5Z2_nzCZXSAlJVhApny3FicEnjYruUvD2JAle0h5VG38yuBqFLAhMCOVwDSyFhQCcUCJ1knZTTIzQiCaNRTBg7RqMeiXrmFJ15vwEgOeXxCD1PfbvdBRuM8thqvN7Kusbz71A5Yx1eyS9TuWgd7Efl8aK2B48PJrzjlW2iu0rJ1jRv-Nbum1K6Ft_JIM_RiZa1ry5-9xi9LuYvs4do-XT_OJsuI8VYEqKCMxoDT0odcyi4AkaLlFPGVVrmvZLqbqCUMckLBlma06SAUitQJXCWsjG6GnJ3zn7uKx_Exu5d050UhCQk4SzLeioeKOWs967SYufMtvtVEBB9eeKvPNGXJ4byOtvNYDONtm4rD9bVpQiyra3TTjbKeMH-TfgBCPV0IQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kang, Kyungkuen</creator><creator>Miura, Hideyuki</creator><creator>Tsai, Tai-Peng</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</title><author>Kang, Kyungkuen ; Miura, Hideyuki ; Tsai, Tai-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Discretely self-similar</topic><topic>Exterior domain</topic><topic>Fluid dynamics</topic><topic>Landau solution</topic><topic>Navier-Stokes equations</topic><topic>Spatial asymptotics</topic><topic>Stability</topic><topic>Studies</topic><topic>Time asymptotics</topic><topic>Time-periodic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Kyungkuen</creatorcontrib><creatorcontrib>Miura, Hideyuki</creatorcontrib><creatorcontrib>Tsai, Tai-Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Kyungkuen</au><au>Miura, Hideyuki</au><au>Tsai, Tai-Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</atitle><jtitle>Communications in partial differential equations</jtitle><date>2012-10</date><risdate>2012</risdate><volume>37</volume><issue>10</issue><spage>1717</spage><epage>1753</epage><pages>1717-1753</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/03605302.2012.708082</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2012-10, Vol.37 (10), p.1717-1753 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_proquest_journals_1151593776 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Discretely self-similar Exterior domain Fluid dynamics Landau solution Navier-Stokes equations Spatial asymptotics Stability Studies Time asymptotics Time-periodic |
title | Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20Small%20Exterior%20Navier-Stokes%20Flows%20with%20Non-Decaying%20Boundary%20Data&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Kang,%20Kyungkuen&rft.date=2012-10&rft.volume=37&rft.issue=10&rft.spage=1717&rft.epage=1753&rft.pages=1717-1753&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2012.708082&rft_dat=%3Cproquest_cross%3E2814587271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151593776&rft_id=info:pmid/&rfr_iscdi=true |