Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data

We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2012-10, Vol.37 (10), p.1717-1753
Hauptverfasser: Kang, Kyungkuen, Miura, Hideyuki, Tsai, Tai-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1753
container_issue 10
container_start_page 1717
container_title Communications in partial differential equations
container_volume 37
creator Kang, Kyungkuen
Miura, Hideyuki
Tsai, Tai-Peng
description We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.
doi_str_mv 10.1080/03605302.2012.708082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1151593776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814587271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU5Z2_nzCZXSAlJVhApny3FicEnjYruUvD2JAle0h5VG38yuBqFLAhMCOVwDSyFhQCcUCJ1knZTTIzQiCaNRTBg7RqMeiXrmFJ15vwEgOeXxCD1PfbvdBRuM8thqvN7Kusbz71A5Yx1eyS9TuWgd7Efl8aK2B48PJrzjlW2iu0rJ1jRv-Nbum1K6Ft_JIM_RiZa1ry5-9xi9LuYvs4do-XT_OJsuI8VYEqKCMxoDT0odcyi4AkaLlFPGVVrmvZLqbqCUMckLBlma06SAUitQJXCWsjG6GnJ3zn7uKx_Exu5d050UhCQk4SzLeioeKOWs967SYufMtvtVEBB9eeKvPNGXJ4byOtvNYDONtm4rD9bVpQiyra3TTjbKeMH-TfgBCPV0IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151593776</pqid></control><display><type>article</type><title>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Kang, Kyungkuen ; Miura, Hideyuki ; Tsai, Tai-Peng</creator><creatorcontrib>Kang, Kyungkuen ; Miura, Hideyuki ; Tsai, Tai-Peng</creatorcontrib><description>We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2012.708082</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Discretely self-similar ; Exterior domain ; Fluid dynamics ; Landau solution ; Navier-Stokes equations ; Spatial asymptotics ; Stability ; Studies ; Time asymptotics ; Time-periodic</subject><ispartof>Communications in partial differential equations, 2012-10, Vol.37 (10), p.1717-1753</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</citedby><cites>FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03605302.2012.708082$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03605302.2012.708082$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Kang, Kyungkuen</creatorcontrib><creatorcontrib>Miura, Hideyuki</creatorcontrib><creatorcontrib>Tsai, Tai-Peng</creatorcontrib><title>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</title><title>Communications in partial differential equations</title><description>We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.</description><subject>Discretely self-similar</subject><subject>Exterior domain</subject><subject>Fluid dynamics</subject><subject>Landau solution</subject><subject>Navier-Stokes equations</subject><subject>Spatial asymptotics</subject><subject>Stability</subject><subject>Studies</subject><subject>Time asymptotics</subject><subject>Time-periodic</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU5Z2_nzCZXSAlJVhApny3FicEnjYruUvD2JAle0h5VG38yuBqFLAhMCOVwDSyFhQCcUCJ1knZTTIzQiCaNRTBg7RqMeiXrmFJ15vwEgOeXxCD1PfbvdBRuM8thqvN7Kusbz71A5Yx1eyS9TuWgd7Efl8aK2B48PJrzjlW2iu0rJ1jRv-Nbum1K6Ft_JIM_RiZa1ry5-9xi9LuYvs4do-XT_OJsuI8VYEqKCMxoDT0odcyi4AkaLlFPGVVrmvZLqbqCUMckLBlma06SAUitQJXCWsjG6GnJ3zn7uKx_Exu5d050UhCQk4SzLeioeKOWs967SYufMtvtVEBB9eeKvPNGXJ4byOtvNYDONtm4rD9bVpQiyra3TTjbKeMH-TfgBCPV0IQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kang, Kyungkuen</creator><creator>Miura, Hideyuki</creator><creator>Tsai, Tai-Peng</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</title><author>Kang, Kyungkuen ; Miura, Hideyuki ; Tsai, Tai-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b9324095df490b9c032b69239c6d890b96f6f60da418b3076825b0dfc0cd09363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Discretely self-similar</topic><topic>Exterior domain</topic><topic>Fluid dynamics</topic><topic>Landau solution</topic><topic>Navier-Stokes equations</topic><topic>Spatial asymptotics</topic><topic>Stability</topic><topic>Studies</topic><topic>Time asymptotics</topic><topic>Time-periodic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Kyungkuen</creatorcontrib><creatorcontrib>Miura, Hideyuki</creatorcontrib><creatorcontrib>Tsai, Tai-Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Kyungkuen</au><au>Miura, Hideyuki</au><au>Tsai, Tai-Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data</atitle><jtitle>Communications in partial differential equations</jtitle><date>2012-10</date><risdate>2012</risdate><volume>37</volume><issue>10</issue><spage>1717</spage><epage>1753</epage><pages>1717-1753</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>We prove the existence of unique solutions for the 3D incompressible Navier-Stokes equations in an exterior domain with small boundary data which do not necessarily decay in time. As a corollary, the existence of unique small time-periodic solutions is shown. We next show that the spatial asymptotics of the periodic solution is given by the same Landau solution at all times. Lastly we show that if the boundary datum is time-periodic and the initial datum is asymptotically self-similar, then the solution converges to the sum of a time-periodic vector field and a forward self-similar vector field as time goes to infinity.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03605302.2012.708082</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5302
ispartof Communications in partial differential equations, 2012-10, Vol.37 (10), p.1717-1753
issn 0360-5302
1532-4133
language eng
recordid cdi_proquest_journals_1151593776
source Taylor & Francis:Master (3349 titles)
subjects Discretely self-similar
Exterior domain
Fluid dynamics
Landau solution
Navier-Stokes equations
Spatial asymptotics
Stability
Studies
Time asymptotics
Time-periodic
title Asymptotics of Small Exterior Navier-Stokes Flows with Non-Decaying Boundary Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20Small%20Exterior%20Navier-Stokes%20Flows%20with%20Non-Decaying%20Boundary%20Data&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Kang,%20Kyungkuen&rft.date=2012-10&rft.volume=37&rft.issue=10&rft.spage=1717&rft.epage=1753&rft.pages=1717-1753&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2012.708082&rft_dat=%3Cproquest_cross%3E2814587271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151593776&rft_id=info:pmid/&rfr_iscdi=true