Unmixing functional magnetic resonance imaging data using matrix factorization

Functional magnetic resonance imaging (fMRI) data is processed by different techniques for detection of activated voxels including principal component analysis (PCA), independent component analysis (ICA), non‐negative matrix factorization (NMF), and so on. In this work, a modified version of NMF met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2012-12, Vol.22 (4), p.195-199
Hauptverfasser: Khaliq, Amir A., Qureshi, Ijaz M., Shah, Jawad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 4
container_start_page 195
container_title International journal of imaging systems and technology
container_volume 22
creator Khaliq, Amir A.
Qureshi, Ijaz M.
Shah, Jawad A.
description Functional magnetic resonance imaging (fMRI) data is processed by different techniques for detection of activated voxels including principal component analysis (PCA), independent component analysis (ICA), non‐negative matrix factorization (NMF), and so on. In this work, a modified version of NMF method is proposed in which data is not supposed to be non‐negative. The proposed scheme is applied to synthetic fMRI data along with NMF conventional method. The results of the proposed scheme show that it is not only computationally efficient but also has good quality results as compared to that of NMF in terms of average correlation. Finally, proposed method is applied to monkey's fMRI data, and the results are compared with that of NMF and ICA. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 195–199, 2012
doi_str_mv 10.1002/ima.22022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1124746015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803587631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-1e8e388932fa4258ca5bec5d6133f6bdc8fd4779eac905bedc48670a6a4a93e03</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGExE9-A-aePJQ2I9uu3skRJEEMCESj5thuyWLtMXdEsFf79aqNy_z-byTmUHoluABwZgObQkDSjGlZ6hHsBRxa85RDwspY5nw7BJdeb_FmBCOeQ8tVlVpj7baRMWh0o2tK9hFJWwq01gdOeNDodImCnM3LZVDA9HBt2EJjbPHqADd1M5-Qiu-RhcF7Ly5-fF9tHp8eBk_xbPnyXQ8msWaMU5jYoRhQkhGC0goFxr42miep4SxIl3nWhR5kmXSgJY4tHKdiDTDkEICkhnM-uium7t39fvB-EZt64MLu3tFCE2yJMWEB-q-o7SrvXemUHsXDnEnRbBq36VCpr7fFdhhx37YnTn9D6rpfPSriDuF9Y05_inAvak0YxlXr4uJWs5pNksnY7VkX3WBe-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1124746015</pqid></control><display><type>article</type><title>Unmixing functional magnetic resonance imaging data using matrix factorization</title><source>Wiley Journals</source><creator>Khaliq, Amir A. ; Qureshi, Ijaz M. ; Shah, Jawad A.</creator><creatorcontrib>Khaliq, Amir A. ; Qureshi, Ijaz M. ; Shah, Jawad A.</creatorcontrib><description>Functional magnetic resonance imaging (fMRI) data is processed by different techniques for detection of activated voxels including principal component analysis (PCA), independent component analysis (ICA), non‐negative matrix factorization (NMF), and so on. In this work, a modified version of NMF method is proposed in which data is not supposed to be non‐negative. The proposed scheme is applied to synthetic fMRI data along with NMF conventional method. The results of the proposed scheme show that it is not only computationally efficient but also has good quality results as compared to that of NMF in terms of average correlation. Finally, proposed method is applied to monkey's fMRI data, and the results are compared with that of NMF and ICA. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 195–199, 2012</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22022</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>fMRI data analysis ; fMRI source separation ; matrix factorization</subject><ispartof>International journal of imaging systems and technology, 2012-12, Vol.22 (4), p.195-199</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3352-1e8e388932fa4258ca5bec5d6133f6bdc8fd4779eac905bedc48670a6a4a93e03</citedby><cites>FETCH-LOGICAL-c3352-1e8e388932fa4258ca5bec5d6133f6bdc8fd4779eac905bedc48670a6a4a93e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Khaliq, Amir A.</creatorcontrib><creatorcontrib>Qureshi, Ijaz M.</creatorcontrib><creatorcontrib>Shah, Jawad A.</creatorcontrib><title>Unmixing functional magnetic resonance imaging data using matrix factorization</title><title>International journal of imaging systems and technology</title><addtitle>Int. J. Imaging Syst. Technol</addtitle><description>Functional magnetic resonance imaging (fMRI) data is processed by different techniques for detection of activated voxels including principal component analysis (PCA), independent component analysis (ICA), non‐negative matrix factorization (NMF), and so on. In this work, a modified version of NMF method is proposed in which data is not supposed to be non‐negative. The proposed scheme is applied to synthetic fMRI data along with NMF conventional method. The results of the proposed scheme show that it is not only computationally efficient but also has good quality results as compared to that of NMF in terms of average correlation. Finally, proposed method is applied to monkey's fMRI data, and the results are compared with that of NMF and ICA. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 195–199, 2012</description><subject>fMRI data analysis</subject><subject>fMRI source separation</subject><subject>matrix factorization</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAQhjdGExE9-A-aePJQ2I9uu3skRJEEMCESj5thuyWLtMXdEsFf79aqNy_z-byTmUHoluABwZgObQkDSjGlZ6hHsBRxa85RDwspY5nw7BJdeb_FmBCOeQ8tVlVpj7baRMWh0o2tK9hFJWwq01gdOeNDodImCnM3LZVDA9HBt2EJjbPHqADd1M5-Qiu-RhcF7Ly5-fF9tHp8eBk_xbPnyXQ8msWaMU5jYoRhQkhGC0goFxr42miep4SxIl3nWhR5kmXSgJY4tHKdiDTDkEICkhnM-uium7t39fvB-EZt64MLu3tFCE2yJMWEB-q-o7SrvXemUHsXDnEnRbBq36VCpr7fFdhhx37YnTn9D6rpfPSriDuF9Y05_inAvak0YxlXr4uJWs5pNksnY7VkX3WBe-U</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Khaliq, Amir A.</creator><creator>Qureshi, Ijaz M.</creator><creator>Shah, Jawad A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201212</creationdate><title>Unmixing functional magnetic resonance imaging data using matrix factorization</title><author>Khaliq, Amir A. ; Qureshi, Ijaz M. ; Shah, Jawad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-1e8e388932fa4258ca5bec5d6133f6bdc8fd4779eac905bedc48670a6a4a93e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>fMRI data analysis</topic><topic>fMRI source separation</topic><topic>matrix factorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaliq, Amir A.</creatorcontrib><creatorcontrib>Qureshi, Ijaz M.</creatorcontrib><creatorcontrib>Shah, Jawad A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaliq, Amir A.</au><au>Qureshi, Ijaz M.</au><au>Shah, Jawad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unmixing functional magnetic resonance imaging data using matrix factorization</atitle><jtitle>International journal of imaging systems and technology</jtitle><addtitle>Int. J. Imaging Syst. Technol</addtitle><date>2012-12</date><risdate>2012</risdate><volume>22</volume><issue>4</issue><spage>195</spage><epage>199</epage><pages>195-199</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>Functional magnetic resonance imaging (fMRI) data is processed by different techniques for detection of activated voxels including principal component analysis (PCA), independent component analysis (ICA), non‐negative matrix factorization (NMF), and so on. In this work, a modified version of NMF method is proposed in which data is not supposed to be non‐negative. The proposed scheme is applied to synthetic fMRI data along with NMF conventional method. The results of the proposed scheme show that it is not only computationally efficient but also has good quality results as compared to that of NMF in terms of average correlation. Finally, proposed method is applied to monkey's fMRI data, and the results are compared with that of NMF and ICA. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 195–199, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/ima.22022</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2012-12, Vol.22 (4), p.195-199
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_1124746015
source Wiley Journals
subjects fMRI data analysis
fMRI source separation
matrix factorization
title Unmixing functional magnetic resonance imaging data using matrix factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unmixing%20functional%20magnetic%20resonance%20imaging%20data%20using%20matrix%20factorization&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Khaliq,%20Amir%20A.&rft.date=2012-12&rft.volume=22&rft.issue=4&rft.spage=195&rft.epage=199&rft.pages=195-199&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22022&rft_dat=%3Cproquest_cross%3E2803587631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1124746015&rft_id=info:pmid/&rfr_iscdi=true