Managing a service system with social interactions: Stability and chaos

► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2012-12, Vol.63 (4), p.1178-1188
Hauptverfasser: Yuan, Xuchuan, Hwarng, H. Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1188
container_issue 4
container_start_page 1178
container_title Computers & industrial engineering
container_volume 63
creator Yuan, Xuchuan
Hwarng, H. Brian
description ► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic. This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.
doi_str_mv 10.1016/j.cie.2012.06.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1115694113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835212001830</els_id><sourcerecordid>2801680761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9gsMSfc2XE-YEIVFKQiBmC2Lo7TOmqTYrtF_fcElZnplvfuTo-xa4QUAfPbLjXOpgJQpJCnIMQJm2BZVAkoBadsAjKHpJRKnLOLEDoAyFSFEzZ_pZ6Wrl9y4sH6vTOWh0OIdsO_XVzxMBhHa-76aD2Z6IY-3PH3SLVbu3jg1DfcrGgIl-yspXWwV39zyj6fHj9mz8nibf4ye1gkRgoVkwJFS3mdlVAXplaZlKYmJGVNjplsSlmUUJaiVSRl3RoloBAkGgJTqLqtajllN8e9Wz987WyIuht2vh9PakRUeZUhypHCI2X8EIK3rd56tyF_0Aj6t5fu9NhL__bSkOux1-jcHx07vr931uswIr2xjfPWRN0M7h_7B0aSclw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115694113</pqid></control><display><type>article</type><title>Managing a service system with social interactions: Stability and chaos</title><source>Elsevier ScienceDirect Journals</source><creator>Yuan, Xuchuan ; Hwarng, H. Brian</creator><creatorcontrib>Yuan, Xuchuan ; Hwarng, H. Brian</creatorcontrib><description>► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic. This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2012.06.022</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Chaos ; Consumer behavior ; Customer services ; Decision making ; Demand ; Expected utility ; Queueing system ; Service system ; Social interaction ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2012-12, Vol.63 (4), p.1178-1188</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</citedby><cites>FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835212001830$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yuan, Xuchuan</creatorcontrib><creatorcontrib>Hwarng, H. Brian</creatorcontrib><title>Managing a service system with social interactions: Stability and chaos</title><title>Computers &amp; industrial engineering</title><description>► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic. This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.</description><subject>Chaos</subject><subject>Consumer behavior</subject><subject>Customer services</subject><subject>Decision making</subject><subject>Demand</subject><subject>Expected utility</subject><subject>Queueing system</subject><subject>Service system</subject><subject>Social interaction</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9gsMSfc2XE-YEIVFKQiBmC2Lo7TOmqTYrtF_fcElZnplvfuTo-xa4QUAfPbLjXOpgJQpJCnIMQJm2BZVAkoBadsAjKHpJRKnLOLEDoAyFSFEzZ_pZ6Wrl9y4sH6vTOWh0OIdsO_XVzxMBhHa-76aD2Z6IY-3PH3SLVbu3jg1DfcrGgIl-yspXWwV39zyj6fHj9mz8nibf4ye1gkRgoVkwJFS3mdlVAXplaZlKYmJGVNjplsSlmUUJaiVSRl3RoloBAkGgJTqLqtajllN8e9Wz987WyIuht2vh9PakRUeZUhypHCI2X8EIK3rd56tyF_0Aj6t5fu9NhL__bSkOux1-jcHx07vr931uswIr2xjfPWRN0M7h_7B0aSclw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Yuan, Xuchuan</creator><creator>Hwarng, H. Brian</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201212</creationdate><title>Managing a service system with social interactions: Stability and chaos</title><author>Yuan, Xuchuan ; Hwarng, H. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chaos</topic><topic>Consumer behavior</topic><topic>Customer services</topic><topic>Decision making</topic><topic>Demand</topic><topic>Expected utility</topic><topic>Queueing system</topic><topic>Service system</topic><topic>Social interaction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xuchuan</creatorcontrib><creatorcontrib>Hwarng, H. Brian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xuchuan</au><au>Hwarng, H. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Managing a service system with social interactions: Stability and chaos</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2012-12</date><risdate>2012</risdate><volume>63</volume><issue>4</issue><spage>1178</spage><epage>1188</epage><pages>1178-1188</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic. This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2012.06.022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2012-12, Vol.63 (4), p.1178-1188
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_journals_1115694113
source Elsevier ScienceDirect Journals
subjects Chaos
Consumer behavior
Customer services
Decision making
Demand
Expected utility
Queueing system
Service system
Social interaction
Studies
title Managing a service system with social interactions: Stability and chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20a%20service%20system%20with%20social%20interactions:%20Stability%20and%20chaos&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Yuan,%20Xuchuan&rft.date=2012-12&rft.volume=63&rft.issue=4&rft.spage=1178&rft.epage=1188&rft.pages=1178-1188&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2012.06.022&rft_dat=%3Cproquest_cross%3E2801680761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115694113&rft_id=info:pmid/&rft_els_id=S0360835212001830&rfr_iscdi=true