Managing a service system with social interactions: Stability and chaos
► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or c...
Gespeichert in:
Veröffentlicht in: | Computers & industrial engineering 2012-12, Vol.63 (4), p.1178-1188 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1188 |
---|---|
container_issue | 4 |
container_start_page | 1178 |
container_title | Computers & industrial engineering |
container_volume | 63 |
creator | Yuan, Xuchuan Hwarng, H. Brian |
description | ► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic.
This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand. |
doi_str_mv | 10.1016/j.cie.2012.06.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1115694113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835212001830</els_id><sourcerecordid>2801680761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9gsMSfc2XE-YEIVFKQiBmC2Lo7TOmqTYrtF_fcElZnplvfuTo-xa4QUAfPbLjXOpgJQpJCnIMQJm2BZVAkoBadsAjKHpJRKnLOLEDoAyFSFEzZ_pZ6Wrl9y4sH6vTOWh0OIdsO_XVzxMBhHa-76aD2Z6IY-3PH3SLVbu3jg1DfcrGgIl-yspXWwV39zyj6fHj9mz8nibf4ye1gkRgoVkwJFS3mdlVAXplaZlKYmJGVNjplsSlmUUJaiVSRl3RoloBAkGgJTqLqtajllN8e9Wz987WyIuht2vh9PakRUeZUhypHCI2X8EIK3rd56tyF_0Aj6t5fu9NhL__bSkOux1-jcHx07vr931uswIr2xjfPWRN0M7h_7B0aSclw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115694113</pqid></control><display><type>article</type><title>Managing a service system with social interactions: Stability and chaos</title><source>Elsevier ScienceDirect Journals</source><creator>Yuan, Xuchuan ; Hwarng, H. Brian</creator><creatorcontrib>Yuan, Xuchuan ; Hwarng, H. Brian</creatorcontrib><description>► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic.
This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2012.06.022</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Chaos ; Consumer behavior ; Customer services ; Decision making ; Demand ; Expected utility ; Queueing system ; Service system ; Social interaction ; Studies</subject><ispartof>Computers & industrial engineering, 2012-12, Vol.63 (4), p.1178-1188</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</citedby><cites>FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835212001830$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yuan, Xuchuan</creatorcontrib><creatorcontrib>Hwarng, H. Brian</creatorcontrib><title>Managing a service system with social interactions: Stability and chaos</title><title>Computers & industrial engineering</title><description>► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic.
This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.</description><subject>Chaos</subject><subject>Consumer behavior</subject><subject>Customer services</subject><subject>Decision making</subject><subject>Demand</subject><subject>Expected utility</subject><subject>Queueing system</subject><subject>Service system</subject><subject>Social interaction</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9gsMSfc2XE-YEIVFKQiBmC2Lo7TOmqTYrtF_fcElZnplvfuTo-xa4QUAfPbLjXOpgJQpJCnIMQJm2BZVAkoBadsAjKHpJRKnLOLEDoAyFSFEzZ_pZ6Wrl9y4sH6vTOWh0OIdsO_XVzxMBhHa-76aD2Z6IY-3PH3SLVbu3jg1DfcrGgIl-yspXWwV39zyj6fHj9mz8nibf4ye1gkRgoVkwJFS3mdlVAXplaZlKYmJGVNjplsSlmUUJaiVSRl3RoloBAkGgJTqLqtajllN8e9Wz987WyIuht2vh9PakRUeZUhypHCI2X8EIK3rd56tyF_0Aj6t5fu9NhL__bSkOux1-jcHx07vr931uswIr2xjfPWRN0M7h_7B0aSclw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Yuan, Xuchuan</creator><creator>Hwarng, H. Brian</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201212</creationdate><title>Managing a service system with social interactions: Stability and chaos</title><author>Yuan, Xuchuan ; Hwarng, H. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-712fa6b480b7cb5433cba1a5ec6143d83780882f5a33bfc52072a2da0c75bf9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chaos</topic><topic>Consumer behavior</topic><topic>Customer services</topic><topic>Decision making</topic><topic>Demand</topic><topic>Expected utility</topic><topic>Queueing system</topic><topic>Service system</topic><topic>Social interaction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xuchuan</creatorcontrib><creatorcontrib>Hwarng, H. Brian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xuchuan</au><au>Hwarng, H. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Managing a service system with social interactions: Stability and chaos</atitle><jtitle>Computers & industrial engineering</jtitle><date>2012-12</date><risdate>2012</risdate><volume>63</volume><issue>4</issue><spage>1178</spage><epage>1188</epage><pages>1178-1188</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>► We study the impact of social interaction in a service system. ► Customers are backward looking and rational when making adoption decisions. ► Potential customers are attracted through social interaction with existing customers. ► The steady state arrival rate dynamics can be stable, periodic or chaotic.
This paper investigates the dynamic behavior of a service system in terms of the arrival rate in the steady state under the influence of social interactions. Customers are backward looking and rational when making purchasing decisions. Existing customers’ re-purchasing decisions are based on their experienced utility – a function of the average waiting time and their expected utility. Potential customers are attracted through social interactions with existing customers. It is shown that the arrival rate of the system in the steady state can exhibit stability, periodic cycles, or chaos due to the effect of social interactions and customers’ purchasing behavior. Two examples based on an M/M/1 queueing system illustrate the role of social interactions and the effect of service rates on the stability of the arrival rate in the steady state. The result highlights the dynamical complexity of a simple service system under the impact of customers’ behavioral factors, or social interactions. It suggests a new perspective to managing service operations whereby social interactions may play a critical role in the fluctuations of demand.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2012.06.022</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2012-12, Vol.63 (4), p.1178-1188 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_journals_1115694113 |
source | Elsevier ScienceDirect Journals |
subjects | Chaos Consumer behavior Customer services Decision making Demand Expected utility Queueing system Service system Social interaction Studies |
title | Managing a service system with social interactions: Stability and chaos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20a%20service%20system%20with%20social%20interactions:%20Stability%20and%20chaos&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Yuan,%20Xuchuan&rft.date=2012-12&rft.volume=63&rft.issue=4&rft.spage=1178&rft.epage=1188&rft.pages=1178-1188&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2012.06.022&rft_dat=%3Cproquest_cross%3E2801680761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115694113&rft_id=info:pmid/&rft_els_id=S0360835212001830&rfr_iscdi=true |