Consistency for the additive efficient normalization of semivalues

► The B-reduced game is defined and extension of Sobolev’s reduced game. ► B-reduced and path-independent linear reduced game only coincide on Sobolev’s case. ► The additive efficient normalization of semivalues is characterized by B-consistency. ► The ESE-value is characterized by path-independentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2013-02, Vol.224 (3), p.566-571
Hauptverfasser: Xu, Genjiu, Driessen, Theo S.H., Sun, Hao, Su, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 3
container_start_page 566
container_title European journal of operational research
container_volume 224
creator Xu, Genjiu
Driessen, Theo S.H.
Sun, Hao
Su, Jun
description ► The B-reduced game is defined and extension of Sobolev’s reduced game. ► B-reduced and path-independent linear reduced game only coincide on Sobolev’s case. ► The additive efficient normalization of semivalues is characterized by B-consistency. ► The ESE-value is characterized by path-independently linear consistency. ► The relationship between ESE-values and the least square values is derived. This paper contributes to consistency for the additive efficient normalization of semivalues. Motivated from the additive efficient normalization of a semivalue being a B-revision of the Shapley value, we introduce the B-reduced game which is an extension of Sobolev’s reduced game. Then the additive efficient normalization of a semivalue is axiomatized as the unique value satisfying covariance, symmetry, and B-consistency. Furthermore, by means of the path-independently linear consistency together with the standardness for two-person games, the additive efficient normalization of semivalues is also characterized. Accessorily, the additive efficient normalization of semivalues is directly verified as the linear consistent least square values (see Ruiz et al., 1998).
doi_str_mv 10.1016/j.ejor.2012.08.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1115385062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221712006418</els_id><sourcerecordid>2799829031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-33581b308e2e0c8f7c3ac5771aa97dedb20d88759d27b863c7c8a4857a81a14f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz7tmkmYzBS9a_IKCFz2HNDvBLO2mJmmh_nq31LOnubzPvDMPYzfAG-DQ3vUN9TE1goNoODYc8IRNALWoW2z5KZtwqXUtBOhzdpFzzzkHBWrCHudxyCEXGty-8jFV5Ysq23WhhB1V5H1wgYZSDTGt7Sr82BLiUEVfZVqHnV1tKV-xM29Xma7_5iX7fH76mL_Wi_eXt_nDonYSRamlVAhLyZEEcYdeO2md0hqsnemOuqXgHaJWs07oJbbSaYd2ikpbBAtTLy_Z7XHvJsXvsbeYPm7TMFYaAFASFW_FmBLHlEsx50TebFJY27Q3wM3BlenNwZU5uDIczehqhO6PEI337wIlkw9vO-pCIldMF8N_-C8Iu3KM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115385062</pqid></control><display><type>article</type><title>Consistency for the additive efficient normalization of semivalues</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Genjiu ; Driessen, Theo S.H. ; Sun, Hao ; Su, Jun</creator><creatorcontrib>Xu, Genjiu ; Driessen, Theo S.H. ; Sun, Hao ; Su, Jun</creatorcontrib><description>► The B-reduced game is defined and extension of Sobolev’s reduced game. ► B-reduced and path-independent linear reduced game only coincide on Sobolev’s case. ► The additive efficient normalization of semivalues is characterized by B-consistency. ► The ESE-value is characterized by path-independently linear consistency. ► The relationship between ESE-values and the least square values is derived. This paper contributes to consistency for the additive efficient normalization of semivalues. Motivated from the additive efficient normalization of a semivalue being a B-revision of the Shapley value, we introduce the B-reduced game which is an extension of Sobolev’s reduced game. Then the additive efficient normalization of a semivalue is axiomatized as the unique value satisfying covariance, symmetry, and B-consistency. Furthermore, by means of the path-independently linear consistency together with the standardness for two-person games, the additive efficient normalization of semivalues is also characterized. Accessorily, the additive efficient normalization of semivalues is directly verified as the linear consistent least square values (see Ruiz et al., 1998).</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2012.08.018</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-consistency ; Additive efficient normalization of semivalues ; Game theory ; Linear consistency ; Mathematical functions ; Shapley value ; Studies ; Symmetry</subject><ispartof>European journal of operational research, 2013-02, Vol.224 (3), p.566-571</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 1, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-33581b308e2e0c8f7c3ac5771aa97dedb20d88759d27b863c7c8a4857a81a14f3</citedby><cites>FETCH-LOGICAL-c382t-33581b308e2e0c8f7c3ac5771aa97dedb20d88759d27b863c7c8a4857a81a14f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2012.08.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Xu, Genjiu</creatorcontrib><creatorcontrib>Driessen, Theo S.H.</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Su, Jun</creatorcontrib><title>Consistency for the additive efficient normalization of semivalues</title><title>European journal of operational research</title><description>► The B-reduced game is defined and extension of Sobolev’s reduced game. ► B-reduced and path-independent linear reduced game only coincide on Sobolev’s case. ► The additive efficient normalization of semivalues is characterized by B-consistency. ► The ESE-value is characterized by path-independently linear consistency. ► The relationship between ESE-values and the least square values is derived. This paper contributes to consistency for the additive efficient normalization of semivalues. Motivated from the additive efficient normalization of a semivalue being a B-revision of the Shapley value, we introduce the B-reduced game which is an extension of Sobolev’s reduced game. Then the additive efficient normalization of a semivalue is axiomatized as the unique value satisfying covariance, symmetry, and B-consistency. Furthermore, by means of the path-independently linear consistency together with the standardness for two-person games, the additive efficient normalization of semivalues is also characterized. Accessorily, the additive efficient normalization of semivalues is directly verified as the linear consistent least square values (see Ruiz et al., 1998).</description><subject>[formula omitted]-consistency</subject><subject>Additive efficient normalization of semivalues</subject><subject>Game theory</subject><subject>Linear consistency</subject><subject>Mathematical functions</subject><subject>Shapley value</subject><subject>Studies</subject><subject>Symmetry</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz7tmkmYzBS9a_IKCFz2HNDvBLO2mJmmh_nq31LOnubzPvDMPYzfAG-DQ3vUN9TE1goNoODYc8IRNALWoW2z5KZtwqXUtBOhzdpFzzzkHBWrCHudxyCEXGty-8jFV5Ysq23WhhB1V5H1wgYZSDTGt7Sr82BLiUEVfZVqHnV1tKV-xM29Xma7_5iX7fH76mL_Wi_eXt_nDonYSRamlVAhLyZEEcYdeO2md0hqsnemOuqXgHaJWs07oJbbSaYd2ikpbBAtTLy_Z7XHvJsXvsbeYPm7TMFYaAFASFW_FmBLHlEsx50TebFJY27Q3wM3BlenNwZU5uDIczehqhO6PEI337wIlkw9vO-pCIldMF8N_-C8Iu3KM</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Xu, Genjiu</creator><creator>Driessen, Theo S.H.</creator><creator>Sun, Hao</creator><creator>Su, Jun</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Consistency for the additive efficient normalization of semivalues</title><author>Xu, Genjiu ; Driessen, Theo S.H. ; Sun, Hao ; Su, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-33581b308e2e0c8f7c3ac5771aa97dedb20d88759d27b863c7c8a4857a81a14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>[formula omitted]-consistency</topic><topic>Additive efficient normalization of semivalues</topic><topic>Game theory</topic><topic>Linear consistency</topic><topic>Mathematical functions</topic><topic>Shapley value</topic><topic>Studies</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Genjiu</creatorcontrib><creatorcontrib>Driessen, Theo S.H.</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Su, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Genjiu</au><au>Driessen, Theo S.H.</au><au>Sun, Hao</au><au>Su, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistency for the additive efficient normalization of semivalues</atitle><jtitle>European journal of operational research</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>224</volume><issue>3</issue><spage>566</spage><epage>571</epage><pages>566-571</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>► The B-reduced game is defined and extension of Sobolev’s reduced game. ► B-reduced and path-independent linear reduced game only coincide on Sobolev’s case. ► The additive efficient normalization of semivalues is characterized by B-consistency. ► The ESE-value is characterized by path-independently linear consistency. ► The relationship between ESE-values and the least square values is derived. This paper contributes to consistency for the additive efficient normalization of semivalues. Motivated from the additive efficient normalization of a semivalue being a B-revision of the Shapley value, we introduce the B-reduced game which is an extension of Sobolev’s reduced game. Then the additive efficient normalization of a semivalue is axiomatized as the unique value satisfying covariance, symmetry, and B-consistency. Furthermore, by means of the path-independently linear consistency together with the standardness for two-person games, the additive efficient normalization of semivalues is also characterized. Accessorily, the additive efficient normalization of semivalues is directly verified as the linear consistent least square values (see Ruiz et al., 1998).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2012.08.018</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2013-02, Vol.224 (3), p.566-571
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_1115385062
source ScienceDirect Journals (5 years ago - present)
subjects [formula omitted]-consistency
Additive efficient normalization of semivalues
Game theory
Linear consistency
Mathematical functions
Shapley value
Studies
Symmetry
title Consistency for the additive efficient normalization of semivalues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistency%20for%20the%20additive%20efficient%20normalization%20of%20semivalues&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Xu,%20Genjiu&rft.date=2013-02-01&rft.volume=224&rft.issue=3&rft.spage=566&rft.epage=571&rft.pages=566-571&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2012.08.018&rft_dat=%3Cproquest_cross%3E2799829031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115385062&rft_id=info:pmid/&rft_els_id=S0377221712006418&rfr_iscdi=true