Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2012-11, Vol.4 (11), p.900-906
Hauptverfasser: Reig, Amanda J., Pires, Marcos M., Snyder, Rae Ana, Wu, Yibing, Jo, Hyunil, Kulp, Daniel W., Butch, Susan E., Calhoun, Jennifer R., Szyperski, Thomas, Solomon, Edward I., DeGrado, William F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 906
container_issue 11
container_start_page 900
container_title Nature chemistry
container_volume 4
creator Reig, Amanda J.
Pires, Marcos M.
Snyder, Rae Ana
Wu, Yibing
Jo, Hyunil
Kulp, Daniel W.
Butch, Susan E.
Calhoun, Jennifer R.
Szyperski, Thomas
Solomon, Edward I.
DeGrado, William F.
description De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O 2 -dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N -hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 10 6 -fold increase in the relative rate between the arylamine N -hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites. Representing the first successful rational reprogramming of function in a de novo protein, the reactivity of a designed di-iron carboxylate protein from the Due Ferri family was altered from hydroquinone oxidation to arylamine N -hydroxylation through the introduction of a critical third histidine ligand in the active site.
doi_str_mv 10.1038/nchem.1454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1115025712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797971511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-767976aaec7f69eded0ff1fd1ca5b8d10dd04145c8957e91217465b7e49562ef3</originalsourceid><addsrcrecordid>eNplkE1PAjEQhhujEUQv_gDTxJtmsbPbj90jQVEjiRc9b5btFJZAi20h8u9dBI2Jp5lknrxv5iHkElgfWJbf2XqGyz5wwY9IF5QQCc94cfy7Z6xDzkKYMyZFBvKUdNKM5UUueZe8DBYRfRUbZ6kzNM6Qus_tFG2icYVWo43UY1XHZtPE7Q7RSK3bOHq_RjpC7xu68i5iY8M5OTHVIuDFYfbI--jhbfiUjF8fn4eDcVJnuYqJkqpQsqqwVkYWqFEzY8BoqCsxyTUwrRlvv6nzQigsIAXFpZgo5IWQKZqsR673uW3xxxpDLOdu7W1bWQKAYKlQkLbUzZ6qvQvBoylXvllWflsCK3feym9v5c5bC18dIteTJepf9EdUC9zugdCe7BT9n87_cV864HfB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115025712</pqid></control><display><type>article</type><title>Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Reig, Amanda J. ; Pires, Marcos M. ; Snyder, Rae Ana ; Wu, Yibing ; Jo, Hyunil ; Kulp, Daniel W. ; Butch, Susan E. ; Calhoun, Jennifer R. ; Szyperski, Thomas ; Solomon, Edward I. ; DeGrado, William F.</creator><creatorcontrib>Reig, Amanda J. ; Pires, Marcos M. ; Snyder, Rae Ana ; Wu, Yibing ; Jo, Hyunil ; Kulp, Daniel W. ; Butch, Susan E. ; Calhoun, Jennifer R. ; Szyperski, Thomas ; Solomon, Edward I. ; DeGrado, William F.</creatorcontrib><description>De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O 2 -dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N -hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 10 6 -fold increase in the relative rate between the arylamine N -hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites. Representing the first successful rational reprogramming of function in a de novo protein, the reactivity of a designed di-iron carboxylate protein from the Due Ferri family was altered from hydroquinone oxidation to arylamine N -hydroxylation through the introduction of a critical third histidine ligand in the active site.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1454</identifier><identifier>PMID: 23089864</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/263 ; 639/638/45/535 ; 639/638/92/469 ; Amino Acid Sequence ; Amino acids ; Analytical Chemistry ; Biochemistry ; Ceruloplasmin - metabolism ; Chemistry ; Chemistry/Food Science ; Drug Design ; Electrons ; Enzymes ; Hydroquinones - chemistry ; Hydroquinones - metabolism ; Hydroxylation ; Inorganic Chemistry ; Iron ; Iron-Binding Proteins - chemistry ; Iron-Binding Proteins - metabolism ; Kinetics ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Organic Chemistry ; Oxidation ; Oxygen - metabolism ; Physical Chemistry ; Protein Folding ; Protein Stability ; Protein Structure, Secondary ; Proteins</subject><ispartof>Nature chemistry, 2012-11, Vol.4 (11), p.900-906</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Nov 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-767976aaec7f69eded0ff1fd1ca5b8d10dd04145c8957e91217465b7e49562ef3</citedby><cites>FETCH-LOGICAL-c387t-767976aaec7f69eded0ff1fd1ca5b8d10dd04145c8957e91217465b7e49562ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.1454$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.1454$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23089864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reig, Amanda J.</creatorcontrib><creatorcontrib>Pires, Marcos M.</creatorcontrib><creatorcontrib>Snyder, Rae Ana</creatorcontrib><creatorcontrib>Wu, Yibing</creatorcontrib><creatorcontrib>Jo, Hyunil</creatorcontrib><creatorcontrib>Kulp, Daniel W.</creatorcontrib><creatorcontrib>Butch, Susan E.</creatorcontrib><creatorcontrib>Calhoun, Jennifer R.</creatorcontrib><creatorcontrib>Szyperski, Thomas</creatorcontrib><creatorcontrib>Solomon, Edward I.</creatorcontrib><creatorcontrib>DeGrado, William F.</creatorcontrib><title>Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O 2 -dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N -hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 10 6 -fold increase in the relative rate between the arylamine N -hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites. Representing the first successful rational reprogramming of function in a de novo protein, the reactivity of a designed di-iron carboxylate protein from the Due Ferri family was altered from hydroquinone oxidation to arylamine N -hydroxylation through the introduction of a critical third histidine ligand in the active site.</description><subject>639/638/263</subject><subject>639/638/45/535</subject><subject>639/638/92/469</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Ceruloplasmin - metabolism</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Drug Design</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Hydroquinones - chemistry</subject><subject>Hydroquinones - metabolism</subject><subject>Hydroxylation</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Iron-Binding Proteins - chemistry</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Oxygen - metabolism</subject><subject>Physical Chemistry</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkE1PAjEQhhujEUQv_gDTxJtmsbPbj90jQVEjiRc9b5btFJZAi20h8u9dBI2Jp5lknrxv5iHkElgfWJbf2XqGyz5wwY9IF5QQCc94cfy7Z6xDzkKYMyZFBvKUdNKM5UUueZe8DBYRfRUbZ6kzNM6Qus_tFG2icYVWo43UY1XHZtPE7Q7RSK3bOHq_RjpC7xu68i5iY8M5OTHVIuDFYfbI--jhbfiUjF8fn4eDcVJnuYqJkqpQsqqwVkYWqFEzY8BoqCsxyTUwrRlvv6nzQigsIAXFpZgo5IWQKZqsR673uW3xxxpDLOdu7W1bWQKAYKlQkLbUzZ6qvQvBoylXvllWflsCK3feym9v5c5bC18dIteTJepf9EdUC9zugdCe7BT9n87_cV864HfB</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Reig, Amanda J.</creator><creator>Pires, Marcos M.</creator><creator>Snyder, Rae Ana</creator><creator>Wu, Yibing</creator><creator>Jo, Hyunil</creator><creator>Kulp, Daniel W.</creator><creator>Butch, Susan E.</creator><creator>Calhoun, Jennifer R.</creator><creator>Szyperski, Thomas</creator><creator>Solomon, Edward I.</creator><creator>DeGrado, William F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20121101</creationdate><title>Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins</title><author>Reig, Amanda J. ; Pires, Marcos M. ; Snyder, Rae Ana ; Wu, Yibing ; Jo, Hyunil ; Kulp, Daniel W. ; Butch, Susan E. ; Calhoun, Jennifer R. ; Szyperski, Thomas ; Solomon, Edward I. ; DeGrado, William F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-767976aaec7f69eded0ff1fd1ca5b8d10dd04145c8957e91217465b7e49562ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/638/263</topic><topic>639/638/45/535</topic><topic>639/638/92/469</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Ceruloplasmin - metabolism</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Drug Design</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Hydroquinones - chemistry</topic><topic>Hydroquinones - metabolism</topic><topic>Hydroxylation</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Iron-Binding Proteins - chemistry</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Oxygen - metabolism</topic><topic>Physical Chemistry</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reig, Amanda J.</creatorcontrib><creatorcontrib>Pires, Marcos M.</creatorcontrib><creatorcontrib>Snyder, Rae Ana</creatorcontrib><creatorcontrib>Wu, Yibing</creatorcontrib><creatorcontrib>Jo, Hyunil</creatorcontrib><creatorcontrib>Kulp, Daniel W.</creatorcontrib><creatorcontrib>Butch, Susan E.</creatorcontrib><creatorcontrib>Calhoun, Jennifer R.</creatorcontrib><creatorcontrib>Szyperski, Thomas</creatorcontrib><creatorcontrib>Solomon, Edward I.</creatorcontrib><creatorcontrib>DeGrado, William F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reig, Amanda J.</au><au>Pires, Marcos M.</au><au>Snyder, Rae Ana</au><au>Wu, Yibing</au><au>Jo, Hyunil</au><au>Kulp, Daniel W.</au><au>Butch, Susan E.</au><au>Calhoun, Jennifer R.</au><au>Szyperski, Thomas</au><au>Solomon, Edward I.</au><au>DeGrado, William F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>4</volume><issue>11</issue><spage>900</spage><epage>906</epage><pages>900-906</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O 2 -dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N -hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 10 6 -fold increase in the relative rate between the arylamine N -hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites. Representing the first successful rational reprogramming of function in a de novo protein, the reactivity of a designed di-iron carboxylate protein from the Due Ferri family was altered from hydroquinone oxidation to arylamine N -hydroxylation through the introduction of a critical third histidine ligand in the active site.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23089864</pmid><doi>10.1038/nchem.1454</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2012-11, Vol.4 (11), p.900-906
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_journals_1115025712
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/638/263
639/638/45/535
639/638/92/469
Amino Acid Sequence
Amino acids
Analytical Chemistry
Biochemistry
Ceruloplasmin - metabolism
Chemistry
Chemistry/Food Science
Drug Design
Electrons
Enzymes
Hydroquinones - chemistry
Hydroquinones - metabolism
Hydroxylation
Inorganic Chemistry
Iron
Iron-Binding Proteins - chemistry
Iron-Binding Proteins - metabolism
Kinetics
Ligands
Models, Molecular
Molecular Sequence Data
Mutation
Organic Chemistry
Oxidation
Oxygen - metabolism
Physical Chemistry
Protein Folding
Protein Stability
Protein Structure, Secondary
Proteins
title Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alteration%20of%20the%20oxygen-dependent%20reactivity%20of%20de%20novo%20Due%20Ferri%20proteins&rft.jtitle=Nature%20chemistry&rft.au=Reig,%20Amanda%20J.&rft.date=2012-11-01&rft.volume=4&rft.issue=11&rft.spage=900&rft.epage=906&rft.pages=900-906&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1454&rft_dat=%3Cproquest_cross%3E2797971511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115025712&rft_id=info:pmid/23089864&rfr_iscdi=true