Development of an HT PEM Fuel Cell Emulator Using a Multiphase Interleaved DC-DC Converter Topology

This paper presents a new emulator topology for a high-temperature (HT) proton-exchange membrane (PEM) fuel cell (FC). Emulators are used to predict FC behavior and facilitate development of the power-conditioning subsystems. In this paper, the high-temperature system is modeled and emulated both in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2013-03, Vol.28 (3), p.1120-1131
Hauptverfasser: de Beer, C., Barendse, P., Khan, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1131
container_issue 3
container_start_page 1120
container_title IEEE transactions on power electronics
container_volume 28
creator de Beer, C.
Barendse, P.
Khan, A.
description This paper presents a new emulator topology for a high-temperature (HT) proton-exchange membrane (PEM) fuel cell (FC). Emulators are used to predict FC behavior and facilitate development of the power-conditioning subsystems. In this paper, the high-temperature system is modeled and emulated both in the steady state and transient domains. The model is tailored to operate effectively in real time on the emulator hardware and to deliver acceptable performance during steady-state and dynamic conditions. In particular, a two-stage approach is applied to the design of the emulator hardware. The first stage is based on a multiphase interleaved converter, capable of maximizing ripple cancellation, while ensuring rapid dynamic performance through the use of reduced filter components. These benefits are only apparent by operating the converter at its critical duty ratio. This is achieved through the introduction of a power-stage converter, which tracks the steady-state behavior of the FC, allowing the multiphase converter to account for the rapid transient behavior. This operating principle improves the quality of the output dc voltage and dynamic performance beyond that achieved by conventional emulator topologies. The experimental results of the FC stack, HT PEM FC model and emulator are presented to confirm the performance of the proposed system.
doi_str_mv 10.1109/TPEL.2012.2208481
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1114025190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6238380</ieee_id><sourcerecordid>2795059731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-fdb11eb4ce78a6b0464937b764360b50eed8a7771b8c867d1babc9e191f83d433</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsH78APGyIB5TZ7Lb7OYoaWqFih7qOWySiUa22bibFPrvbWnxNDDzvO_Aw9gdwhQR0qf1R76axoDxNI5BS41nbIKpxAgQ1DmbgNazSKepuGRXIfwAoJwBTlg1py1Z12-oG7hruOn4cs0_8je-GMnyjKzl-Wa0ZnCef4a2--KGv412aPtvE4i_dgN5S2ZLNZ9n0Tzjmeu25Pdbvna9s-5rd8MuGmMD3Z7mNftc5OtsGa3eX16z51VUiVgMUVOXiFTKipQ2SQkykalQpUqkSKCcAVGtjVIKS13pRNVYmrJKCVNstKilENfs4djbe_c7UhiKHzf6bv-yQEQJ8QxT2FN4pCrvQvDUFL1vN8bvCoTi4LI4uCwOLouTy33m8dRsQmVs401XteE_GCuQqOSBuz9yLRH9n5NYaKFB_AEtHHts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114025190</pqid></control><display><type>article</type><title>Development of an HT PEM Fuel Cell Emulator Using a Multiphase Interleaved DC-DC Converter Topology</title><source>IEEE Electronic Library (IEL)</source><creator>de Beer, C. ; Barendse, P. ; Khan, A.</creator><creatorcontrib>de Beer, C. ; Barendse, P. ; Khan, A.</creatorcontrib><description>This paper presents a new emulator topology for a high-temperature (HT) proton-exchange membrane (PEM) fuel cell (FC). Emulators are used to predict FC behavior and facilitate development of the power-conditioning subsystems. In this paper, the high-temperature system is modeled and emulated both in the steady state and transient domains. The model is tailored to operate effectively in real time on the emulator hardware and to deliver acceptable performance during steady-state and dynamic conditions. In particular, a two-stage approach is applied to the design of the emulator hardware. The first stage is based on a multiphase interleaved converter, capable of maximizing ripple cancellation, while ensuring rapid dynamic performance through the use of reduced filter components. These benefits are only apparent by operating the converter at its critical duty ratio. This is achieved through the introduction of a power-stage converter, which tracks the steady-state behavior of the FC, allowing the multiphase converter to account for the rapid transient behavior. This operating principle improves the quality of the output dc voltage and dynamic performance beyond that achieved by conventional emulator topologies. The experimental results of the FC stack, HT PEM FC model and emulator are presented to confirm the performance of the proposed system.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2012.2208481</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Circuit properties ; Circuits of signal characteristics conditioning (including delay circuits) ; Converter ; Direct energy conversion and energy accumulation ; Electric currents ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electronic circuits ; Electronics ; emulation ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; fuel cell (FC) ; Fuel cells ; High temperature ; multiphase ; Power supply ; Signal convertors ; Steady-state ; Topology ; Transfer functions ; Transient analysis ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2013-03, Vol.28 (3), p.1120-1131</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-fdb11eb4ce78a6b0464937b764360b50eed8a7771b8c867d1babc9e191f83d433</citedby><cites>FETCH-LOGICAL-c323t-fdb11eb4ce78a6b0464937b764360b50eed8a7771b8c867d1babc9e191f83d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6238380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6238380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27041741$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Beer, C.</creatorcontrib><creatorcontrib>Barendse, P.</creatorcontrib><creatorcontrib>Khan, A.</creatorcontrib><title>Development of an HT PEM Fuel Cell Emulator Using a Multiphase Interleaved DC-DC Converter Topology</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper presents a new emulator topology for a high-temperature (HT) proton-exchange membrane (PEM) fuel cell (FC). Emulators are used to predict FC behavior and facilitate development of the power-conditioning subsystems. In this paper, the high-temperature system is modeled and emulated both in the steady state and transient domains. The model is tailored to operate effectively in real time on the emulator hardware and to deliver acceptable performance during steady-state and dynamic conditions. In particular, a two-stage approach is applied to the design of the emulator hardware. The first stage is based on a multiphase interleaved converter, capable of maximizing ripple cancellation, while ensuring rapid dynamic performance through the use of reduced filter components. These benefits are only apparent by operating the converter at its critical duty ratio. This is achieved through the introduction of a power-stage converter, which tracks the steady-state behavior of the FC, allowing the multiphase converter to account for the rapid transient behavior. This operating principle improves the quality of the output dc voltage and dynamic performance beyond that achieved by conventional emulator topologies. The experimental results of the FC stack, HT PEM FC model and emulator are presented to confirm the performance of the proposed system.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Circuit properties</subject><subject>Circuits of signal characteristics conditioning (including delay circuits)</subject><subject>Converter</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric currents</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>emulation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>fuel cell (FC)</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>multiphase</subject><subject>Power supply</subject><subject>Signal convertors</subject><subject>Steady-state</subject><subject>Topology</subject><subject>Transfer functions</subject><subject>Transient analysis</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsH78APGyIB5TZ7Lb7OYoaWqFih7qOWySiUa22bibFPrvbWnxNDDzvO_Aw9gdwhQR0qf1R76axoDxNI5BS41nbIKpxAgQ1DmbgNazSKepuGRXIfwAoJwBTlg1py1Z12-oG7hruOn4cs0_8je-GMnyjKzl-Wa0ZnCef4a2--KGv412aPtvE4i_dgN5S2ZLNZ9n0Tzjmeu25Pdbvna9s-5rd8MuGmMD3Z7mNftc5OtsGa3eX16z51VUiVgMUVOXiFTKipQ2SQkykalQpUqkSKCcAVGtjVIKS13pRNVYmrJKCVNstKilENfs4djbe_c7UhiKHzf6bv-yQEQJ8QxT2FN4pCrvQvDUFL1vN8bvCoTi4LI4uCwOLouTy33m8dRsQmVs401XteE_GCuQqOSBuz9yLRH9n5NYaKFB_AEtHHts</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>de Beer, C.</creator><creator>Barendse, P.</creator><creator>Khan, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Development of an HT PEM Fuel Cell Emulator Using a Multiphase Interleaved DC-DC Converter Topology</title><author>de Beer, C. ; Barendse, P. ; Khan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-fdb11eb4ce78a6b0464937b764360b50eed8a7771b8c867d1babc9e191f83d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Circuit properties</topic><topic>Circuits of signal characteristics conditioning (including delay circuits)</topic><topic>Converter</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric currents</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>emulation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>fuel cell (FC)</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>multiphase</topic><topic>Power supply</topic><topic>Signal convertors</topic><topic>Steady-state</topic><topic>Topology</topic><topic>Transfer functions</topic><topic>Transient analysis</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Beer, C.</creatorcontrib><creatorcontrib>Barendse, P.</creatorcontrib><creatorcontrib>Khan, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Beer, C.</au><au>Barendse, P.</au><au>Khan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an HT PEM Fuel Cell Emulator Using a Multiphase Interleaved DC-DC Converter Topology</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>28</volume><issue>3</issue><spage>1120</spage><epage>1131</epage><pages>1120-1131</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper presents a new emulator topology for a high-temperature (HT) proton-exchange membrane (PEM) fuel cell (FC). Emulators are used to predict FC behavior and facilitate development of the power-conditioning subsystems. In this paper, the high-temperature system is modeled and emulated both in the steady state and transient domains. The model is tailored to operate effectively in real time on the emulator hardware and to deliver acceptable performance during steady-state and dynamic conditions. In particular, a two-stage approach is applied to the design of the emulator hardware. The first stage is based on a multiphase interleaved converter, capable of maximizing ripple cancellation, while ensuring rapid dynamic performance through the use of reduced filter components. These benefits are only apparent by operating the converter at its critical duty ratio. This is achieved through the introduction of a power-stage converter, which tracks the steady-state behavior of the FC, allowing the multiphase converter to account for the rapid transient behavior. This operating principle improves the quality of the output dc voltage and dynamic performance beyond that achieved by conventional emulator topologies. The experimental results of the FC stack, HT PEM FC model and emulator are presented to confirm the performance of the proposed system.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2012.2208481</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2013-03, Vol.28 (3), p.1120-1131
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1114025190
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitance
Circuit properties
Circuits of signal characteristics conditioning (including delay circuits)
Converter
Direct energy conversion and energy accumulation
Electric currents
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electronic circuits
Electronics
emulation
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
fuel cell (FC)
Fuel cells
High temperature
multiphase
Power supply
Signal convertors
Steady-state
Topology
Transfer functions
Transient analysis
Voltage control
title Development of an HT PEM Fuel Cell Emulator Using a Multiphase Interleaved DC-DC Converter Topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20HT%20PEM%20Fuel%20Cell%20Emulator%20Using%20a%20Multiphase%20Interleaved%20DC-DC%20Converter%20Topology&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=de%20Beer,%20C.&rft.date=2013-03-01&rft.volume=28&rft.issue=3&rft.spage=1120&rft.epage=1131&rft.pages=1120-1131&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2012.2208481&rft_dat=%3Cproquest_RIE%3E2795059731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1114025190&rft_id=info:pmid/&rft_ieee_id=6238380&rfr_iscdi=true