Can solid carbon materials be lighter than water and air?
The number of possible hollow carbon molecules with a spatially closed structure is theoretically unlimited. Only a few have been studied up to now, mainly with relative small radiuses. If the structure is big enough, spatially closed, hollow, spherical, and with a monolayer shell, it will have a co...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2007-10, Vol.9 (5), p.939-944 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The number of possible hollow carbon molecules with a spatially closed structure is theoretically unlimited. Only a few have been studied up to now, mainly with relative small radiuses. If the structure is big enough, spatially closed, hollow, spherical, and with a monolayer shell, it will have a considerable elevating force when immersed in liquids or gases. Calculations demonstrate that it can be lighter than liquids and air when the molecule is over a certain size. Hollow multilayered carbon structures with such radiuses have already been reported. Development of new methods for synthesis of closed carbon molecules where the shell is reduced to a single layer will allow designing new materials, which are lighter than gases.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-007-9229-3 |