Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes

Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2009-08, Vol.11 (6), p.1311-1319
Hauptverfasser: Tamburri, Emanuela, Toschi, Francesco, Guglielmotti, Valeria, Scatena, Elisa, Orlanducci, Silvia, Terranova, Maria Letizia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 6
container_start_page 1311
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 11
creator Tamburri, Emanuela
Toschi, Francesco
Guglielmotti, Valeria
Scatena, Elisa
Orlanducci, Silvia
Terranova, Maria Letizia
description Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.
doi_str_mv 10.1007/s11051-008-9520-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112754156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791860531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-66370eb2245f78b20e530ac9608d240b6597e43066150732ff9321f073694fc43</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgiMRvu7NhORlTxT6rKAhJMluPakKqNi50M-fa4hIGF6Z7u3nsn_Qi5RLhGAHWTEEEgBahoLRjQ8YjMUChGq1q-HWfNq4qCkuUpOUtpA4CS1WxG3lemC940sbWmb0NXNGPhts72MdhPt8vbbRHD0LtUBF-sWmqD6d26CHHtYp4mRjP-3KyJTc53ua8fGpfOyYk32-QufuecvN7fvSwe6fL54Wlxu6SWo-yplFyBaxgrhVdVw8AJDsbWEqo1K6GRolau5CAlClCceV9zhj5LWZfelnxOrqbefQxfg0u93oQhdvmlRkSmRIlCZhdOLhtDStF5vY_tzsRRI-gDQT0R1JmgPhDUY86wKZOyt_tw8U_zv6FvnqBzPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112754156</pqid></control><display><type>article</type><title>Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes</title><source>SpringerNature Journals</source><creator>Tamburri, Emanuela ; Toschi, Francesco ; Guglielmotti, Valeria ; Scatena, Elisa ; Orlanducci, Silvia ; Terranova, Maria Letizia</creator><creatorcontrib>Tamburri, Emanuela ; Toschi, Francesco ; Guglielmotti, Valeria ; Scatena, Elisa ; Orlanducci, Silvia ; Terranova, Maria Letizia</creatorcontrib><description>Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-008-9520-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrochemistry ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanoparticles ; Nanotechnology ; Nickel ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Qualitative research ; Research Paper ; Scanning electron microscopy ; Thin films ; X-ray diffraction</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2009-08, Vol.11 (6), p.1311-1319</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-66370eb2245f78b20e530ac9608d240b6597e43066150732ff9321f073694fc43</citedby><cites>FETCH-LOGICAL-c316t-66370eb2245f78b20e530ac9608d240b6597e43066150732ff9321f073694fc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-008-9520-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-008-9520-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tamburri, Emanuela</creatorcontrib><creatorcontrib>Toschi, Francesco</creatorcontrib><creatorcontrib>Guglielmotti, Valeria</creatorcontrib><creatorcontrib>Scatena, Elisa</creatorcontrib><creatorcontrib>Orlanducci, Silvia</creatorcontrib><creatorcontrib>Terranova, Maria Letizia</creatorcontrib><title>Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemistry</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Qualitative research</subject><subject>Research Paper</subject><subject>Scanning electron microscopy</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgiMRvu7NhORlTxT6rKAhJMluPakKqNi50M-fa4hIGF6Z7u3nsn_Qi5RLhGAHWTEEEgBahoLRjQ8YjMUChGq1q-HWfNq4qCkuUpOUtpA4CS1WxG3lemC940sbWmb0NXNGPhts72MdhPt8vbbRHD0LtUBF-sWmqD6d26CHHtYp4mRjP-3KyJTc53ua8fGpfOyYk32-QufuecvN7fvSwe6fL54Wlxu6SWo-yplFyBaxgrhVdVw8AJDsbWEqo1K6GRolau5CAlClCceV9zhj5LWZfelnxOrqbefQxfg0u93oQhdvmlRkSmRIlCZhdOLhtDStF5vY_tzsRRI-gDQT0R1JmgPhDUY86wKZOyt_tw8U_zv6FvnqBzPA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Tamburri, Emanuela</creator><creator>Toschi, Francesco</creator><creator>Guglielmotti, Valeria</creator><creator>Scatena, Elisa</creator><creator>Orlanducci, Silvia</creator><creator>Terranova, Maria Letizia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20090801</creationdate><title>Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes</title><author>Tamburri, Emanuela ; Toschi, Francesco ; Guglielmotti, Valeria ; Scatena, Elisa ; Orlanducci, Silvia ; Terranova, Maria Letizia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-66370eb2245f78b20e530ac9608d240b6597e43066150732ff9321f073694fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemistry</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Qualitative research</topic><topic>Research Paper</topic><topic>Scanning electron microscopy</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamburri, Emanuela</creatorcontrib><creatorcontrib>Toschi, Francesco</creatorcontrib><creatorcontrib>Guglielmotti, Valeria</creatorcontrib><creatorcontrib>Scatena, Elisa</creatorcontrib><creatorcontrib>Orlanducci, Silvia</creatorcontrib><creatorcontrib>Terranova, Maria Letizia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamburri, Emanuela</au><au>Toschi, Francesco</au><au>Guglielmotti, Valeria</au><au>Scatena, Elisa</au><au>Orlanducci, Silvia</au><au>Terranova, Maria Letizia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>11</volume><issue>6</issue><spage>1311</spage><epage>1319</epage><pages>1311-1319</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-008-9520-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2009-08, Vol.11 (6), p.1311-1319
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_1112754156
source SpringerNature Journals
subjects Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrochemistry
Inorganic Chemistry
Lasers
Materials Science
Nanoparticles
Nanotechnology
Nickel
Optical Devices
Optics
Photonics
Physical Chemistry
Qualitative research
Research Paper
Scanning electron microscopy
Thin films
X-ray diffraction
title Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofabrication%20by%20electrochemical%20routes%20of%20Ni-coated%20ordered%20arrays%20of%20carbon%20nanotubes&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Tamburri,%20Emanuela&rft.date=2009-08-01&rft.volume=11&rft.issue=6&rft.spage=1311&rft.epage=1319&rft.pages=1311-1319&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-008-9520-y&rft_dat=%3Cproquest_cross%3E2791860531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112754156&rft_id=info:pmid/&rfr_iscdi=true