Toxicity of amorphous silica nanoparticles in mouse keratinocytes

The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nanoparticle Research 2009-01, Vol.11 (1), p.15-24
Hauptverfasser: Yu, Kyung O., Grabinski, Christin M., Schrand, Amanda M., Murdock, Richard C., Wang, Wei, Gu, Baohua, Schlager, John J., Hussain, Saber M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 15
container_title Journal of Nanoparticle Research
container_volume 11
creator Yu, Kyung O.
Grabinski, Christin M.
Schrand, Amanda M.
Murdock, Richard C.
Wang, Wei
Gu, Baohua
Schlager, John J.
Hussain, Saber M.
description The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO 2 ) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO 2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.
doi_str_mv 10.1007/s11051-008-9417-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_1112745711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791893481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5fa629a1924018998ee8312510f9ad411881475d575b6f1d7524e035f06fc4073</originalsourceid><addsrcrecordid>eNp1kE9PAyEQxYnRxFr9AN7WeEYZFhY4No3_EhMvNfFGkIKltssKNLHfXpr14MXTTDK_9-blIXQJ5AYIEbcZgHDAhEisGAisjtAEuKBYqu7tuO6tlJiIjp2is5zXhEBHFZ2g2SJ-BxvKvom-MduYhlXc5SaHTbCm6U0fB5NKsBuXm9A323p0zadLpoQ-2n1x-RydeLPJ7uJ3TtHr_d1i_oifXx6e5rNnbBmRBXNv6kcDijICUinpnGyBciBemSUDkBKY4Esu-HvnYSk4ZY603JPOVwfRTtHV6BtzCTrXzM6ubOx7Z4tWVapoZa5HZkjxa-dy0eu4S32NpQGACsYFQKVgpGyKOSfn9ZDC1qS9BqIPbeqxTV3b1Ic2taoaOmpyZfsPl_44_yv6AZ4rdeU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112745711</pqid></control><display><type>article</type><title>Toxicity of amorphous silica nanoparticles in mouse keratinocytes</title><source>SpringerLink Journals</source><creator>Yu, Kyung O. ; Grabinski, Christin M. ; Schrand, Amanda M. ; Murdock, Richard C. ; Wang, Wei ; Gu, Baohua ; Schlager, John J. ; Hussain, Saber M.</creator><creatorcontrib>Yu, Kyung O. ; Grabinski, Christin M. ; Schrand, Amanda M. ; Murdock, Richard C. ; Wang, Wei ; Gu, Baohua ; Schlager, John J. ; Hussain, Saber M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO 2 ) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO 2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-008-9417-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>BASIC BIOLOGICAL SCIENCES ; BIOLOGICAL EFFECTS ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; CYTOPLASM ; Cytotoxicity ; DISTRIBUTION ; Inorganic Chemistry ; LACTATE DEHYDROGENASE ; Lasers ; Materials Science ; MEMBRANES ; MITOCHONDRIA ; mouse keratinocytes ; Nanoparticles ; Nanoparticles and Occupational Health ; Nanotechnology ; Occupational safety ; Optical Devices ; Optics ; oxidative stress ; OXYGEN ; Photonics ; Physical Chemistry ; REDOX POTENTIAL ; SILICA ; size-dependent toxicity of nanoparticles ; TOXICITY ; TRANSMISSION ELECTRON MICROSCOPY ; VIABILITY</subject><ispartof>Journal of Nanoparticle Research, 2009-01, Vol.11 (1), p.15-24</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5fa629a1924018998ee8312510f9ad411881475d575b6f1d7524e035f06fc4073</citedby><cites>FETCH-LOGICAL-c408t-5fa629a1924018998ee8312510f9ad411881475d575b6f1d7524e035f06fc4073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-008-9417-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-008-9417-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/947592$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kyung O.</creatorcontrib><creatorcontrib>Grabinski, Christin M.</creatorcontrib><creatorcontrib>Schrand, Amanda M.</creatorcontrib><creatorcontrib>Murdock, Richard C.</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Gu, Baohua</creatorcontrib><creatorcontrib>Schlager, John J.</creatorcontrib><creatorcontrib>Hussain, Saber M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Toxicity of amorphous silica nanoparticles in mouse keratinocytes</title><title>Journal of Nanoparticle Research</title><addtitle>J Nanopart Res</addtitle><description>The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO 2 ) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO 2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOLOGICAL EFFECTS</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>CYTOPLASM</subject><subject>Cytotoxicity</subject><subject>DISTRIBUTION</subject><subject>Inorganic Chemistry</subject><subject>LACTATE DEHYDROGENASE</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>MEMBRANES</subject><subject>MITOCHONDRIA</subject><subject>mouse keratinocytes</subject><subject>Nanoparticles</subject><subject>Nanoparticles and Occupational Health</subject><subject>Nanotechnology</subject><subject>Occupational safety</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>oxidative stress</subject><subject>OXYGEN</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>REDOX POTENTIAL</subject><subject>SILICA</subject><subject>size-dependent toxicity of nanoparticles</subject><subject>TOXICITY</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>VIABILITY</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9PAyEQxYnRxFr9AN7WeEYZFhY4No3_EhMvNfFGkIKltssKNLHfXpr14MXTTDK_9-blIXQJ5AYIEbcZgHDAhEisGAisjtAEuKBYqu7tuO6tlJiIjp2is5zXhEBHFZ2g2SJ-BxvKvom-MduYhlXc5SaHTbCm6U0fB5NKsBuXm9A323p0zadLpoQ-2n1x-RydeLPJ7uJ3TtHr_d1i_oifXx6e5rNnbBmRBXNv6kcDijICUinpnGyBciBemSUDkBKY4Esu-HvnYSk4ZY603JPOVwfRTtHV6BtzCTrXzM6ubOx7Z4tWVapoZa5HZkjxa-dy0eu4S32NpQGACsYFQKVgpGyKOSfn9ZDC1qS9BqIPbeqxTV3b1Ic2taoaOmpyZfsPl_44_yv6AZ4rdeU</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Yu, Kyung O.</creator><creator>Grabinski, Christin M.</creator><creator>Schrand, Amanda M.</creator><creator>Murdock, Richard C.</creator><creator>Wang, Wei</creator><creator>Gu, Baohua</creator><creator>Schlager, John J.</creator><creator>Hussain, Saber M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>Toxicity of amorphous silica nanoparticles in mouse keratinocytes</title><author>Yu, Kyung O. ; Grabinski, Christin M. ; Schrand, Amanda M. ; Murdock, Richard C. ; Wang, Wei ; Gu, Baohua ; Schlager, John J. ; Hussain, Saber M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5fa629a1924018998ee8312510f9ad411881475d575b6f1d7524e035f06fc4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOLOGICAL EFFECTS</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>CYTOPLASM</topic><topic>Cytotoxicity</topic><topic>DISTRIBUTION</topic><topic>Inorganic Chemistry</topic><topic>LACTATE DEHYDROGENASE</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>MEMBRANES</topic><topic>MITOCHONDRIA</topic><topic>mouse keratinocytes</topic><topic>Nanoparticles</topic><topic>Nanoparticles and Occupational Health</topic><topic>Nanotechnology</topic><topic>Occupational safety</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>oxidative stress</topic><topic>OXYGEN</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>REDOX POTENTIAL</topic><topic>SILICA</topic><topic>size-dependent toxicity of nanoparticles</topic><topic>TOXICITY</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>VIABILITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kyung O.</creatorcontrib><creatorcontrib>Grabinski, Christin M.</creatorcontrib><creatorcontrib>Schrand, Amanda M.</creatorcontrib><creatorcontrib>Murdock, Richard C.</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Gu, Baohua</creatorcontrib><creatorcontrib>Schlager, John J.</creatorcontrib><creatorcontrib>Hussain, Saber M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of Nanoparticle Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kyung O.</au><au>Grabinski, Christin M.</au><au>Schrand, Amanda M.</au><au>Murdock, Richard C.</au><au>Wang, Wei</au><au>Gu, Baohua</au><au>Schlager, John J.</au><au>Hussain, Saber M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toxicity of amorphous silica nanoparticles in mouse keratinocytes</atitle><jtitle>Journal of Nanoparticle Research</jtitle><stitle>J Nanopart Res</stitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>1</issue><spage>15</spage><epage>24</epage><pages>15-24</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO 2 ) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO 2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-008-9417-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of Nanoparticle Research, 2009-01, Vol.11 (1), p.15-24
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_1112745711
source SpringerLink Journals
subjects BASIC BIOLOGICAL SCIENCES
BIOLOGICAL EFFECTS
Characterization and Evaluation of Materials
Chemistry and Materials Science
CYTOPLASM
Cytotoxicity
DISTRIBUTION
Inorganic Chemistry
LACTATE DEHYDROGENASE
Lasers
Materials Science
MEMBRANES
MITOCHONDRIA
mouse keratinocytes
Nanoparticles
Nanoparticles and Occupational Health
Nanotechnology
Occupational safety
Optical Devices
Optics
oxidative stress
OXYGEN
Photonics
Physical Chemistry
REDOX POTENTIAL
SILICA
size-dependent toxicity of nanoparticles
TOXICITY
TRANSMISSION ELECTRON MICROSCOPY
VIABILITY
title Toxicity of amorphous silica nanoparticles in mouse keratinocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toxicity%20of%20amorphous%20silica%20nanoparticles%20in%20mouse%20keratinocytes&rft.jtitle=Journal%20of%20Nanoparticle%20Research&rft.au=Yu,%20Kyung%20O.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-01-01&rft.volume=11&rft.issue=1&rft.spage=15&rft.epage=24&rft.pages=15-24&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-008-9417-9&rft_dat=%3Cproquest_osti_%3E2791893481%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112745711&rft_id=info:pmid/&rfr_iscdi=true