A dynamic model for the failure replacement of aging high-voltage transformers

As the electric transmission system in the U.S. ages, mitigating the risk of high-voltage transformer failures becomes an increasingly important issue for transmission owners and operators. This paper introduces a model that supports these efforts by optimizing the acquisition and the deployment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy systems (Berlin. Periodical) 2010-02, Vol.1 (1), p.31-59
Hauptverfasser: Enders, Johannes, Powell, Warren B., Egan, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 31
container_title Energy systems (Berlin. Periodical)
container_volume 1
creator Enders, Johannes
Powell, Warren B.
Egan, David
description As the electric transmission system in the U.S. ages, mitigating the risk of high-voltage transformer failures becomes an increasingly important issue for transmission owners and operators. This paper introduces a model that supports these efforts by optimizing the acquisition and the deployment of high-voltage transformers dynamically over time. We formulate the problem as a Markov Decision Process which cannot be solved for realistic problem instances. Instead we solve the problem using approximate dynamic programming using three different value function approximations, which are compared against an optimal solution for a simplified version of the problem. The methods include a separable, piecewise linear value function, a piecewise linear, two-dimensional approximation, and a piecewise linear function based on an aggregated inventory that is shown to produce solutions within a few percent with very fast convergence. The application of the best performing algorithm to a realistic problem instance gives insights into transformer management issues of practical interest.
doi_str_mv 10.1007/s12667-009-0006-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112396050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790603921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-67930cd4b6749818b8f14190efb1a5677c73385746954db808778bea394da6593</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWLQP4C3gOTrZzeexFL-goAc9h-xust2yHzXZCn2bPkufzJQV8eJhmDn8_jPMD6EbCncUQN5HmgkhCYBOBYLwMzSjSiiSa8nPf2chL9E8xk1iKMgsAzFDbwtc7XvbNSXuhsq12A8Bj2uHvW3aXXA4uG1rS9e5fsSDPx5s3fT18bBu6jX5GtrR1g6PwfYxBTsX4jW68LaNbv7Tr9DH48P78pmsXp9elosVKVnGRyKkzqGsWCEk04qqQnnKqAbnC2q5kLKUea64ZEJzVhUKlJSqcDbXrLKC6_wK3U57t2H43Lk4ms2wC306aSilWfoWOCSKTlQZhhiD82Ybms6GvaFgTu7M5M4kd-bkzvCUyaZMTGxfu_Bn87-hb-IYcZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112396050</pqid></control><display><type>article</type><title>A dynamic model for the failure replacement of aging high-voltage transformers</title><source>SpringerLink Journals</source><creator>Enders, Johannes ; Powell, Warren B. ; Egan, David</creator><creatorcontrib>Enders, Johannes ; Powell, Warren B. ; Egan, David</creatorcontrib><description>As the electric transmission system in the U.S. ages, mitigating the risk of high-voltage transformer failures becomes an increasingly important issue for transmission owners and operators. This paper introduces a model that supports these efforts by optimizing the acquisition and the deployment of high-voltage transformers dynamically over time. We formulate the problem as a Markov Decision Process which cannot be solved for realistic problem instances. Instead we solve the problem using approximate dynamic programming using three different value function approximations, which are compared against an optimal solution for a simplified version of the problem. The methods include a separable, piecewise linear value function, a piecewise linear, two-dimensional approximation, and a piecewise linear function based on an aggregated inventory that is shown to produce solutions within a few percent with very fast convergence. The application of the best performing algorithm to a realistic problem instance gives insights into transformer management issues of practical interest.</description><identifier>ISSN: 1868-3967</identifier><identifier>EISSN: 1868-3975</identifier><identifier>DOI: 10.1007/s12667-009-0006-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Economics and Management ; Electric utilities ; Energy ; Energy Policy ; Energy Systems ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Risk reduction ; Studies ; Transformers</subject><ispartof>Energy systems (Berlin. Periodical), 2010-02, Vol.1 (1), p.31-59</ispartof><rights>Springer-Verlag 2009</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-67930cd4b6749818b8f14190efb1a5677c73385746954db808778bea394da6593</citedby><cites>FETCH-LOGICAL-c425t-67930cd4b6749818b8f14190efb1a5677c73385746954db808778bea394da6593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12667-009-0006-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12667-009-0006-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Enders, Johannes</creatorcontrib><creatorcontrib>Powell, Warren B.</creatorcontrib><creatorcontrib>Egan, David</creatorcontrib><title>A dynamic model for the failure replacement of aging high-voltage transformers</title><title>Energy systems (Berlin. Periodical)</title><addtitle>Energy Syst</addtitle><description>As the electric transmission system in the U.S. ages, mitigating the risk of high-voltage transformer failures becomes an increasingly important issue for transmission owners and operators. This paper introduces a model that supports these efforts by optimizing the acquisition and the deployment of high-voltage transformers dynamically over time. We formulate the problem as a Markov Decision Process which cannot be solved for realistic problem instances. Instead we solve the problem using approximate dynamic programming using three different value function approximations, which are compared against an optimal solution for a simplified version of the problem. The methods include a separable, piecewise linear value function, a piecewise linear, two-dimensional approximation, and a piecewise linear function based on an aggregated inventory that is shown to produce solutions within a few percent with very fast convergence. The application of the best performing algorithm to a realistic problem instance gives insights into transformer management issues of practical interest.</description><subject>Algorithms</subject><subject>Economics and Management</subject><subject>Electric utilities</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Systems</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Risk reduction</subject><subject>Studies</subject><subject>Transformers</subject><issn>1868-3967</issn><issn>1868-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEQx4MoWLQP4C3gOTrZzeexFL-goAc9h-xust2yHzXZCn2bPkufzJQV8eJhmDn8_jPMD6EbCncUQN5HmgkhCYBOBYLwMzSjSiiSa8nPf2chL9E8xk1iKMgsAzFDbwtc7XvbNSXuhsq12A8Bj2uHvW3aXXA4uG1rS9e5fsSDPx5s3fT18bBu6jX5GtrR1g6PwfYxBTsX4jW68LaNbv7Tr9DH48P78pmsXp9elosVKVnGRyKkzqGsWCEk04qqQnnKqAbnC2q5kLKUea64ZEJzVhUKlJSqcDbXrLKC6_wK3U57t2H43Lk4ms2wC306aSilWfoWOCSKTlQZhhiD82Ybms6GvaFgTu7M5M4kd-bkzvCUyaZMTGxfu_Bn87-hb-IYcZA</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Enders, Johannes</creator><creator>Powell, Warren B.</creator><creator>Egan, David</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20100201</creationdate><title>A dynamic model for the failure replacement of aging high-voltage transformers</title><author>Enders, Johannes ; Powell, Warren B. ; Egan, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-67930cd4b6749818b8f14190efb1a5677c73385746954db808778bea394da6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Economics and Management</topic><topic>Electric utilities</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Systems</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Risk reduction</topic><topic>Studies</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enders, Johannes</creatorcontrib><creatorcontrib>Powell, Warren B.</creatorcontrib><creatorcontrib>Egan, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Energy systems (Berlin. Periodical)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enders, Johannes</au><au>Powell, Warren B.</au><au>Egan, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic model for the failure replacement of aging high-voltage transformers</atitle><jtitle>Energy systems (Berlin. Periodical)</jtitle><stitle>Energy Syst</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>1</volume><issue>1</issue><spage>31</spage><epage>59</epage><pages>31-59</pages><issn>1868-3967</issn><eissn>1868-3975</eissn><abstract>As the electric transmission system in the U.S. ages, mitigating the risk of high-voltage transformer failures becomes an increasingly important issue for transmission owners and operators. This paper introduces a model that supports these efforts by optimizing the acquisition and the deployment of high-voltage transformers dynamically over time. We formulate the problem as a Markov Decision Process which cannot be solved for realistic problem instances. Instead we solve the problem using approximate dynamic programming using three different value function approximations, which are compared against an optimal solution for a simplified version of the problem. The methods include a separable, piecewise linear value function, a piecewise linear, two-dimensional approximation, and a piecewise linear function based on an aggregated inventory that is shown to produce solutions within a few percent with very fast convergence. The application of the best performing algorithm to a realistic problem instance gives insights into transformer management issues of practical interest.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12667-009-0006-5</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-3967
ispartof Energy systems (Berlin. Periodical), 2010-02, Vol.1 (1), p.31-59
issn 1868-3967
1868-3975
language eng
recordid cdi_proquest_journals_1112396050
source SpringerLink Journals
subjects Algorithms
Economics and Management
Electric utilities
Energy
Energy Policy
Energy Systems
Operations Research/Decision Theory
Optimization
Original Paper
Risk reduction
Studies
Transformers
title A dynamic model for the failure replacement of aging high-voltage transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20model%20for%20the%20failure%20replacement%20of%C2%A0aging%C2%A0high-voltage%20transformers&rft.jtitle=Energy%20systems%20(Berlin.%20Periodical)&rft.au=Enders,%20Johannes&rft.date=2010-02-01&rft.volume=1&rft.issue=1&rft.spage=31&rft.epage=59&rft.pages=31-59&rft.issn=1868-3967&rft.eissn=1868-3975&rft_id=info:doi/10.1007/s12667-009-0006-5&rft_dat=%3Cproquest_cross%3E2790603921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112396050&rft_id=info:pmid/&rfr_iscdi=true