Minimal quasi-stationary distributions under nullR-recurrence

The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2000-12, Vol.9 (2), p.455-470
Hauptverfasser: Moler, José A., Plo, Fernando, Miguel, Miguel San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 2
container_start_page 455
container_title Test (Madrid, Spain)
container_volume 9
creator Moler, José A.
Plo, Fernando
Miguel, Miguel San
description The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02595745
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112395018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790607321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMo2FYvfoIFb0J0Jtn8O3jQYlWoCKLnJZtkYcu62yabQ799t1Tw8uY9-DHDPEJuEO4RQD08r4AJI1QpzsgMteRUMwnnk0fOKUgtL8k8pQ2ALCXDGXn8aPv213bFLtvU0jTasR16G_eFb9MY2zofcypy70Ms-tx1XzQGl2MMvQtX5KKxXQrXf3NBflYv38s3uv58fV8-ralDKDW1EsEjd8wEXUvGVUATfFNaZ4DXtlRMGeeCk17VgvlJpZdWsKZuhFYN5wtye9q7jcMuhzRWmyHHfjpZISLjRgDqibo7US4OKcXQVNs4_Rb3FUJ1rKf6r4cfALkFV5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112395018</pqid></control><display><type>article</type><title>Minimal quasi-stationary distributions under nullR-recurrence</title><source>Springer Nature - Complete Springer Journals</source><creator>Moler, José A. ; Plo, Fernando ; Miguel, Miguel San</creator><creatorcontrib>Moler, José A. ; Plo, Fernando ; Miguel, Miguel San</creatorcontrib><description>The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/BF02595745</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Probability ; Studies</subject><ispartof>Test (Madrid, Spain), 2000-12, Vol.9 (2), p.455-470</ispartof><rights>Sociedad Española de Estadistica e Investigación Operativa 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</citedby><cites>FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Moler, José A.</creatorcontrib><creatorcontrib>Plo, Fernando</creatorcontrib><creatorcontrib>Miguel, Miguel San</creatorcontrib><title>Minimal quasi-stationary distributions under nullR-recurrence</title><title>Test (Madrid, Spain)</title><description>The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]</description><subject>Probability</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkE9LAzEQxYMo2FYvfoIFb0J0Jtn8O3jQYlWoCKLnJZtkYcu62yabQ799t1Tw8uY9-DHDPEJuEO4RQD08r4AJI1QpzsgMteRUMwnnk0fOKUgtL8k8pQ2ALCXDGXn8aPv213bFLtvU0jTasR16G_eFb9MY2zofcypy70Ms-tx1XzQGl2MMvQtX5KKxXQrXf3NBflYv38s3uv58fV8-ralDKDW1EsEjd8wEXUvGVUATfFNaZ4DXtlRMGeeCk17VgvlJpZdWsKZuhFYN5wtye9q7jcMuhzRWmyHHfjpZISLjRgDqibo7US4OKcXQVNs4_Rb3FUJ1rKf6r4cfALkFV5Y</recordid><startdate>200012</startdate><enddate>200012</enddate><creator>Moler, José A.</creator><creator>Plo, Fernando</creator><creator>Miguel, Miguel San</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200012</creationdate><title>Minimal quasi-stationary distributions under nullR-recurrence</title><author>Moler, José A. ; Plo, Fernando ; Miguel, Miguel San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Probability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moler, José A.</creatorcontrib><creatorcontrib>Plo, Fernando</creatorcontrib><creatorcontrib>Miguel, Miguel San</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moler, José A.</au><au>Plo, Fernando</au><au>Miguel, Miguel San</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal quasi-stationary distributions under nullR-recurrence</atitle><jtitle>Test (Madrid, Spain)</jtitle><date>2000-12</date><risdate>2000</risdate><volume>9</volume><issue>2</issue><spage>455</spage><epage>470</epage><pages>455-470</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02595745</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2000-12, Vol.9 (2), p.455-470
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_journals_1112395018
source Springer Nature - Complete Springer Journals
subjects Probability
Studies
title Minimal quasi-stationary distributions under nullR-recurrence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20quasi-stationary%20distributions%20under%20nullR-recurrence&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Moler,%20Jos%C3%A9%20A.&rft.date=2000-12&rft.volume=9&rft.issue=2&rft.spage=455&rft.epage=470&rft.pages=455-470&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/BF02595745&rft_dat=%3Cproquest_cross%3E2790607321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112395018&rft_id=info:pmid/&rfr_iscdi=true