Minimal quasi-stationary distributions under nullR-recurrence
The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2000-12, Vol.9 (2), p.455-470 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 2 |
container_start_page | 455 |
container_title | Test (Madrid, Spain) |
container_volume | 9 |
creator | Moler, José A. Plo, Fernando Miguel, Miguel San |
description | The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF02595745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112395018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790607321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMo2FYvfoIFb0J0Jtn8O3jQYlWoCKLnJZtkYcu62yabQ799t1Tw8uY9-DHDPEJuEO4RQD08r4AJI1QpzsgMteRUMwnnk0fOKUgtL8k8pQ2ALCXDGXn8aPv213bFLtvU0jTasR16G_eFb9MY2zofcypy70Ms-tx1XzQGl2MMvQtX5KKxXQrXf3NBflYv38s3uv58fV8-ralDKDW1EsEjd8wEXUvGVUATfFNaZ4DXtlRMGeeCk17VgvlJpZdWsKZuhFYN5wtye9q7jcMuhzRWmyHHfjpZISLjRgDqibo7US4OKcXQVNs4_Rb3FUJ1rKf6r4cfALkFV5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112395018</pqid></control><display><type>article</type><title>Minimal quasi-stationary distributions under nullR-recurrence</title><source>Springer Nature - Complete Springer Journals</source><creator>Moler, José A. ; Plo, Fernando ; Miguel, Miguel San</creator><creatorcontrib>Moler, José A. ; Plo, Fernando ; Miguel, Miguel San</creatorcontrib><description>The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/BF02595745</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Probability ; Studies</subject><ispartof>Test (Madrid, Spain), 2000-12, Vol.9 (2), p.455-470</ispartof><rights>Sociedad Española de Estadistica e Investigación Operativa 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</citedby><cites>FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Moler, José A.</creatorcontrib><creatorcontrib>Plo, Fernando</creatorcontrib><creatorcontrib>Miguel, Miguel San</creatorcontrib><title>Minimal quasi-stationary distributions under nullR-recurrence</title><title>Test (Madrid, Spain)</title><description>The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]</description><subject>Probability</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkE9LAzEQxYMo2FYvfoIFb0J0Jtn8O3jQYlWoCKLnJZtkYcu62yabQ799t1Tw8uY9-DHDPEJuEO4RQD08r4AJI1QpzsgMteRUMwnnk0fOKUgtL8k8pQ2ALCXDGXn8aPv213bFLtvU0jTasR16G_eFb9MY2zofcypy70Ms-tx1XzQGl2MMvQtX5KKxXQrXf3NBflYv38s3uv58fV8-ralDKDW1EsEjd8wEXUvGVUATfFNaZ4DXtlRMGeeCk17VgvlJpZdWsKZuhFYN5wtye9q7jcMuhzRWmyHHfjpZISLjRgDqibo7US4OKcXQVNs4_Rb3FUJ1rKf6r4cfALkFV5Y</recordid><startdate>200012</startdate><enddate>200012</enddate><creator>Moler, José A.</creator><creator>Plo, Fernando</creator><creator>Miguel, Miguel San</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200012</creationdate><title>Minimal quasi-stationary distributions under nullR-recurrence</title><author>Moler, José A. ; Plo, Fernando ; Miguel, Miguel San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-a610d13c29e8b6237e19edf4ac903ba47279ccec6d7b52dd7b6d6a52fbf587f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Probability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moler, José A.</creatorcontrib><creatorcontrib>Plo, Fernando</creatorcontrib><creatorcontrib>Miguel, Miguel San</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moler, José A.</au><au>Plo, Fernando</au><au>Miguel, Miguel San</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal quasi-stationary distributions under nullR-recurrence</atitle><jtitle>Test (Madrid, Spain)</jtitle><date>2000-12</date><risdate>2000</risdate><volume>9</volume><issue>2</issue><spage>455</spage><epage>470</epage><pages>455-470</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>The existence of quasi-stationary distributions (QSD) in an absorbing Markov chain entails a stationary behaviour before absorption. In general, depending on the initial distribution, several QSDs may exist. Under some conditions upon the transition matrix between non-absorbing states, we prove that the QSD associated with any Dirac initial distribution, when it exists, is unique, and is the minimal QSD. In other words, if we take this QSD as an initial distribution, the process has the smallest probability of not being absorbed in the first jump.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02595745</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0686 |
ispartof | Test (Madrid, Spain), 2000-12, Vol.9 (2), p.455-470 |
issn | 1133-0686 1863-8260 |
language | eng |
recordid | cdi_proquest_journals_1112395018 |
source | Springer Nature - Complete Springer Journals |
subjects | Probability Studies |
title | Minimal quasi-stationary distributions under nullR-recurrence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20quasi-stationary%20distributions%20under%20nullR-recurrence&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Moler,%20Jos%C3%A9%20A.&rft.date=2000-12&rft.volume=9&rft.issue=2&rft.spage=455&rft.epage=470&rft.pages=455-470&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/BF02595745&rft_dat=%3Cproquest_cross%3E2790607321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112395018&rft_id=info:pmid/&rfr_iscdi=true |