Customized trapping of magnetic particles

This paper presents an efficient technique for trapping of magnetic particles in confined spatial locations using customized designs of micro-coils (MCs). Large magnetic field gradients of up to 20 T/mm and large magnetic forces in the range of 10 −8 Newton on magnetic particles with diameter of 1 μ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2009, Vol.6 (1), p.53-62
Hauptverfasser: Ramadan, Qasem, Poenar, Daniel P., Yu, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 53
container_title Microfluidics and nanofluidics
container_volume 6
creator Ramadan, Qasem
Poenar, Daniel P.
Yu, Chen
description This paper presents an efficient technique for trapping of magnetic particles in confined spatial locations using customized designs of micro-coils (MCs). Large magnetic field gradients of up to 20 T/mm and large magnetic forces in the range of 10 −8 Newton on magnetic particles with diameter of 1 μm have been achieved using MCs with several planar geometrical configurations. A large magnetic field gradient is generated and enhanced by two structural parameters: the small width and high aspect ratio of each single conductor and the ferromagnetic pillars positioned at high-flux density locations. This arrangement creates very steep magnetic potential wells, in particular at the vicinity of the pillars. The system allowed capturing of suspended magnetic particles as far as 1,000 μm from the center of the device. Magnetic particles/cells have been trapped and confined in single and in arrays of deep magnetic potential wells corresponding to the MCs configuration.
doi_str_mv 10.1007/s10404-008-0296-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112394233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790614511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-82366543879efb6f6525e6545324ec1ef9c8d85b4cf71e90eaeb5480bdbeaaab3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhVQhw4FOwkTZsjqvgnTeIC5yjNnKnT1pakO8CnJ1OniQsnW_bvPVuPsWuEewQoHyKCBJkDVDlwrXJ-wmaoUORSazg99hU_ZxcxrgFkyRFm7K7exbHftj-0zMZgh6HtVlnvs61ddTS2LhtsSGVD8ZKdebuJdHWoc_b5_PRRv-aL95e3-nGROyHVmFdcKFVIUZWafKO8KnhBaVAILskhee2qZVU00vkSSQNZagpZQbNsyFrbiDm7mXyH0H_tKI5m3e9Cl04aRORCSy5EonCiXOhjDOTNENqtDd8GwewTMVMiJiVi9okYnjS3B2cbnd34YDvXxqOQI2pQpUocn7iYVt2Kwp8P_jX_BbSRb1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112394233</pqid></control><display><type>article</type><title>Customized trapping of magnetic particles</title><source>SpringerLink Journals</source><creator>Ramadan, Qasem ; Poenar, Daniel P. ; Yu, Chen</creator><creatorcontrib>Ramadan, Qasem ; Poenar, Daniel P. ; Yu, Chen</creatorcontrib><description>This paper presents an efficient technique for trapping of magnetic particles in confined spatial locations using customized designs of micro-coils (MCs). Large magnetic field gradients of up to 20 T/mm and large magnetic forces in the range of 10 −8 Newton on magnetic particles with diameter of 1 μm have been achieved using MCs with several planar geometrical configurations. A large magnetic field gradient is generated and enhanced by two structural parameters: the small width and high aspect ratio of each single conductor and the ferromagnetic pillars positioned at high-flux density locations. This arrangement creates very steep magnetic potential wells, in particular at the vicinity of the pillars. The system allowed capturing of suspended magnetic particles as far as 1,000 μm from the center of the device. Magnetic particles/cells have been trapped and confined in single and in arrays of deep magnetic potential wells corresponding to the MCs configuration.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-008-0296-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Atoms &amp; subatomic particles ; Biological and medical sciences ; Biomedical Engineering and Bioengineering ; Biotechnology ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental and applied biological sciences. Psychology ; Fundamental areas of phenomenology (including applications) ; Magnetic fields ; Methods. Procedures. Technologies ; Nanotechnology and Microengineering ; Others ; Physics ; Research Paper ; Studies ; Trapping ; Various methods and equipments</subject><ispartof>Microfluidics and nanofluidics, 2009, Vol.6 (1), p.53-62</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-82366543879efb6f6525e6545324ec1ef9c8d85b4cf71e90eaeb5480bdbeaaab3</citedby><cites>FETCH-LOGICAL-c346t-82366543879efb6f6525e6545324ec1ef9c8d85b4cf71e90eaeb5480bdbeaaab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-008-0296-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-008-0296-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21190676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramadan, Qasem</creatorcontrib><creatorcontrib>Poenar, Daniel P.</creatorcontrib><creatorcontrib>Yu, Chen</creatorcontrib><title>Customized trapping of magnetic particles</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>This paper presents an efficient technique for trapping of magnetic particles in confined spatial locations using customized designs of micro-coils (MCs). Large magnetic field gradients of up to 20 T/mm and large magnetic forces in the range of 10 −8 Newton on magnetic particles with diameter of 1 μm have been achieved using MCs with several planar geometrical configurations. A large magnetic field gradient is generated and enhanced by two structural parameters: the small width and high aspect ratio of each single conductor and the ferromagnetic pillars positioned at high-flux density locations. This arrangement creates very steep magnetic potential wells, in particular at the vicinity of the pillars. The system allowed capturing of suspended magnetic particles as far as 1,000 μm from the center of the device. Magnetic particles/cells have been trapped and confined in single and in arrays of deep magnetic potential wells corresponding to the MCs configuration.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Atoms &amp; subatomic particles</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biotechnology</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Magnetic fields</subject><subject>Methods. Procedures. Technologies</subject><subject>Nanotechnology and Microengineering</subject><subject>Others</subject><subject>Physics</subject><subject>Research Paper</subject><subject>Studies</subject><subject>Trapping</subject><subject>Various methods and equipments</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhVQhw4FOwkTZsjqvgnTeIC5yjNnKnT1pakO8CnJ1OniQsnW_bvPVuPsWuEewQoHyKCBJkDVDlwrXJ-wmaoUORSazg99hU_ZxcxrgFkyRFm7K7exbHftj-0zMZgh6HtVlnvs61ddTS2LhtsSGVD8ZKdebuJdHWoc_b5_PRRv-aL95e3-nGROyHVmFdcKFVIUZWafKO8KnhBaVAILskhee2qZVU00vkSSQNZagpZQbNsyFrbiDm7mXyH0H_tKI5m3e9Cl04aRORCSy5EonCiXOhjDOTNENqtDd8GwewTMVMiJiVi9okYnjS3B2cbnd34YDvXxqOQI2pQpUocn7iYVt2Kwp8P_jX_BbSRb1U</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Ramadan, Qasem</creator><creator>Poenar, Daniel P.</creator><creator>Yu, Chen</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>2009</creationdate><title>Customized trapping of magnetic particles</title><author>Ramadan, Qasem ; Poenar, Daniel P. ; Yu, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-82366543879efb6f6525e6545324ec1ef9c8d85b4cf71e90eaeb5480bdbeaaab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Atoms &amp; subatomic particles</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biotechnology</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Magnetic fields</topic><topic>Methods. Procedures. Technologies</topic><topic>Nanotechnology and Microengineering</topic><topic>Others</topic><topic>Physics</topic><topic>Research Paper</topic><topic>Studies</topic><topic>Trapping</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramadan, Qasem</creatorcontrib><creatorcontrib>Poenar, Daniel P.</creatorcontrib><creatorcontrib>Yu, Chen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramadan, Qasem</au><au>Poenar, Daniel P.</au><au>Yu, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customized trapping of magnetic particles</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2009</date><risdate>2009</risdate><volume>6</volume><issue>1</issue><spage>53</spage><epage>62</epage><pages>53-62</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>This paper presents an efficient technique for trapping of magnetic particles in confined spatial locations using customized designs of micro-coils (MCs). Large magnetic field gradients of up to 20 T/mm and large magnetic forces in the range of 10 −8 Newton on magnetic particles with diameter of 1 μm have been achieved using MCs with several planar geometrical configurations. A large magnetic field gradient is generated and enhanced by two structural parameters: the small width and high aspect ratio of each single conductor and the ferromagnetic pillars positioned at high-flux density locations. This arrangement creates very steep magnetic potential wells, in particular at the vicinity of the pillars. The system allowed capturing of suspended magnetic particles as far as 1,000 μm from the center of the device. Magnetic particles/cells have been trapped and confined in single and in arrays of deep magnetic potential wells corresponding to the MCs configuration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-008-0296-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2009, Vol.6 (1), p.53-62
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1112394233
source SpringerLink Journals
subjects Analytical Chemistry
Applied fluid mechanics
Atoms & subatomic particles
Biological and medical sciences
Biomedical Engineering and Bioengineering
Biotechnology
Engineering
Engineering Fluid Dynamics
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
Magnetic fields
Methods. Procedures. Technologies
Nanotechnology and Microengineering
Others
Physics
Research Paper
Studies
Trapping
Various methods and equipments
title Customized trapping of magnetic particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customized%20trapping%20of%20magnetic%20particles&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Ramadan,%20Qasem&rft.date=2009&rft.volume=6&rft.issue=1&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-008-0296-2&rft_dat=%3Cproquest_cross%3E2790614511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112394233&rft_id=info:pmid/&rfr_iscdi=true