Microfluidic synthesis of copper nanofluids

Copper nanofluids have been chemically synthesized by using home-made microfluidic reactors and by using a boiling flask-3-neck. The influence of flow rates of reactants, reactants concentrations, and surfactant concentrations on copper particle size and size distribution has been investigated. It h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2010-10, Vol.9 (4-5), p.727-735
Hauptverfasser: Zhang, Yuxiang, Jiang, Wei, Wang, Liqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735
container_issue 4-5
container_start_page 727
container_title Microfluidics and nanofluidics
container_volume 9
creator Zhang, Yuxiang
Jiang, Wei
Wang, Liqiu
description Copper nanofluids have been chemically synthesized by using home-made microfluidic reactors and by using a boiling flask-3-neck. The influence of flow rates of reactants, reactants concentrations, and surfactant concentrations on copper particle size and size distribution has been investigated. It has been found that neither of them has much influence on particle size and size distribution of copper nanoparticles synthesized in microfluidic reactors due to the fast and efficient mass diffusion in microscale dimension. The copper nanoparticles have an average size of about 3.4 nm with a relatively narrow size distribution of around 22% evaluated by the coefficient of variation. While the average size of copper nanoparticles synthesized by flask method changes from 2.7 to 4.9 nm with a coefficient of variation larger than 30%, depending on concentrations of [Cu(NH 3 ) 4 ]·(OH) 2 and surfactant sodium dodecylbenzenesulfonate. In addition, by using microfluidic reactors the synthesis time of copper nanofluids can be reduced as much as one order of magnitude, from ~10 min to ~28 s.
doi_str_mv 10.1007/s10404-010-0586-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112233742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789632321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-e9169e4b9e10ff1b2c136897182d24e5b6ce3be9dd3159428d60edc0825ec4b83</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8F8STRmSRNm6Ms_oMVL3oObTrRLmtbk-5hv71ZuixePM3AvPfm8WPsEuEWAYq7iKBAcUDgkJeayyM2Q42SK2Pg-LCX4pSdxbgCUIVAmLGb19aF3q83bdO6LG678YtiG7PeZ64fBgpZV3XTPZ6zE1-tI13s55x9PD68L5758u3pZXG_5E4qPXIyqA2p2hCC91gLh1KXpsBSNEJRXmtHsibTNBJzo0TZaKDGQSlycqou5ZxdTblD6H82FEe76jehSy8tIgohZaFEUuGkSv1jDOTtENrvKmwtgt0xsRMTm5jYHRMrk-d6n1xFV619qDrXxoNRpEJK6yLpxKSL6dR9UvjT4N_wX5JHb5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112233742</pqid></control><display><type>article</type><title>Microfluidic synthesis of copper nanofluids</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Yuxiang ; Jiang, Wei ; Wang, Liqiu</creator><creatorcontrib>Zhang, Yuxiang ; Jiang, Wei ; Wang, Liqiu</creatorcontrib><description>Copper nanofluids have been chemically synthesized by using home-made microfluidic reactors and by using a boiling flask-3-neck. The influence of flow rates of reactants, reactants concentrations, and surfactant concentrations on copper particle size and size distribution has been investigated. It has been found that neither of them has much influence on particle size and size distribution of copper nanoparticles synthesized in microfluidic reactors due to the fast and efficient mass diffusion in microscale dimension. The copper nanoparticles have an average size of about 3.4 nm with a relatively narrow size distribution of around 22% evaluated by the coefficient of variation. While the average size of copper nanoparticles synthesized by flask method changes from 2.7 to 4.9 nm with a coefficient of variation larger than 30%, depending on concentrations of [Cu(NH 3 ) 4 ]·(OH) 2 and surfactant sodium dodecylbenzenesulfonate. In addition, by using microfluidic reactors the synthesis time of copper nanofluids can be reduced as much as one order of magnitude, from ~10 min to ~28 s.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-010-0586-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Chemical synthesis methods ; Coefficient of variation ; Copper ; Cross-disciplinary physics: materials science; rheology ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Flow rates ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Materials science ; Methods of nanofabrication ; Nanoparticles ; Nanotechnology and Microengineering ; Particle size ; Physics ; Reactors ; Research Paper ; Studies ; Surfactants</subject><ispartof>Microfluidics and nanofluidics, 2010-10, Vol.9 (4-5), p.727-735</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-e9169e4b9e10ff1b2c136897182d24e5b6ce3be9dd3159428d60edc0825ec4b83</citedby><cites>FETCH-LOGICAL-c346t-e9169e4b9e10ff1b2c136897182d24e5b6ce3be9dd3159428d60edc0825ec4b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-010-0586-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-010-0586-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23154667$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuxiang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Wang, Liqiu</creatorcontrib><title>Microfluidic synthesis of copper nanofluids</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Copper nanofluids have been chemically synthesized by using home-made microfluidic reactors and by using a boiling flask-3-neck. The influence of flow rates of reactants, reactants concentrations, and surfactant concentrations on copper particle size and size distribution has been investigated. It has been found that neither of them has much influence on particle size and size distribution of copper nanoparticles synthesized in microfluidic reactors due to the fast and efficient mass diffusion in microscale dimension. The copper nanoparticles have an average size of about 3.4 nm with a relatively narrow size distribution of around 22% evaluated by the coefficient of variation. While the average size of copper nanoparticles synthesized by flask method changes from 2.7 to 4.9 nm with a coefficient of variation larger than 30%, depending on concentrations of [Cu(NH 3 ) 4 ]·(OH) 2 and surfactant sodium dodecylbenzenesulfonate. In addition, by using microfluidic reactors the synthesis time of copper nanofluids can be reduced as much as one order of magnitude, from ~10 min to ~28 s.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Chemical synthesis methods</subject><subject>Coefficient of variation</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanoparticles</subject><subject>Nanotechnology and Microengineering</subject><subject>Particle size</subject><subject>Physics</subject><subject>Reactors</subject><subject>Research Paper</subject><subject>Studies</subject><subject>Surfactants</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8F8STRmSRNm6Ms_oMVL3oObTrRLmtbk-5hv71ZuixePM3AvPfm8WPsEuEWAYq7iKBAcUDgkJeayyM2Q42SK2Pg-LCX4pSdxbgCUIVAmLGb19aF3q83bdO6LG678YtiG7PeZ64fBgpZV3XTPZ6zE1-tI13s55x9PD68L5758u3pZXG_5E4qPXIyqA2p2hCC91gLh1KXpsBSNEJRXmtHsibTNBJzo0TZaKDGQSlycqou5ZxdTblD6H82FEe76jehSy8tIgohZaFEUuGkSv1jDOTtENrvKmwtgt0xsRMTm5jYHRMrk-d6n1xFV619qDrXxoNRpEJK6yLpxKSL6dR9UvjT4N_wX5JHb5o</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Zhang, Yuxiang</creator><creator>Jiang, Wei</creator><creator>Wang, Liqiu</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20101001</creationdate><title>Microfluidic synthesis of copper nanofluids</title><author>Zhang, Yuxiang ; Jiang, Wei ; Wang, Liqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-e9169e4b9e10ff1b2c136897182d24e5b6ce3be9dd3159428d60edc0825ec4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Chemical synthesis methods</topic><topic>Coefficient of variation</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanoparticles</topic><topic>Nanotechnology and Microengineering</topic><topic>Particle size</topic><topic>Physics</topic><topic>Reactors</topic><topic>Research Paper</topic><topic>Studies</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuxiang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Wang, Liqiu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuxiang</au><au>Jiang, Wei</au><au>Wang, Liqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic synthesis of copper nanofluids</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>9</volume><issue>4-5</issue><spage>727</spage><epage>735</epage><pages>727-735</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Copper nanofluids have been chemically synthesized by using home-made microfluidic reactors and by using a boiling flask-3-neck. The influence of flow rates of reactants, reactants concentrations, and surfactant concentrations on copper particle size and size distribution has been investigated. It has been found that neither of them has much influence on particle size and size distribution of copper nanoparticles synthesized in microfluidic reactors due to the fast and efficient mass diffusion in microscale dimension. The copper nanoparticles have an average size of about 3.4 nm with a relatively narrow size distribution of around 22% evaluated by the coefficient of variation. While the average size of copper nanoparticles synthesized by flask method changes from 2.7 to 4.9 nm with a coefficient of variation larger than 30%, depending on concentrations of [Cu(NH 3 ) 4 ]·(OH) 2 and surfactant sodium dodecylbenzenesulfonate. In addition, by using microfluidic reactors the synthesis time of copper nanofluids can be reduced as much as one order of magnitude, from ~10 min to ~28 s.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-010-0586-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2010-10, Vol.9 (4-5), p.727-735
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1112233742
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Applied fluid mechanics
Biomedical Engineering and Bioengineering
Chemical synthesis methods
Coefficient of variation
Copper
Cross-disciplinary physics: materials science
rheology
Engineering
Engineering Fluid Dynamics
Exact sciences and technology
Flow rates
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Materials science
Methods of nanofabrication
Nanoparticles
Nanotechnology and Microengineering
Particle size
Physics
Reactors
Research Paper
Studies
Surfactants
title Microfluidic synthesis of copper nanofluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20synthesis%20of%20copper%20nanofluids&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Zhang,%20Yuxiang&rft.date=2010-10-01&rft.volume=9&rft.issue=4-5&rft.spage=727&rft.epage=735&rft.pages=727-735&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-010-0586-3&rft_dat=%3Cproquest_cross%3E2789632321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112233742&rft_id=info:pmid/&rfr_iscdi=true