Ultrafast measurement of transient electroosmotic flow in microfluidics

We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2011-09, Vol.11 (3), p.353-358
Hauptverfasser: Kuang, Cuifang, Qiao, Rui, Wang, Guiren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 3
container_start_page 353
container_title Microfluidics and nanofluidics
container_volume 11
creator Kuang, Cuifang
Qiao, Rui
Wang, Guiren
description We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.
doi_str_mv 10.1007/s10404-011-0800-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1095622362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785095051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCeFydZNNkc5SiVSh4seeQzSaSsrupmV2k_96USvHiKZnM915mHiG3FB4ogHxEChx4CZSWUAOU-zMyo4JWJVcKzk_3ml2SK8QtAJeMwoysNt2YjDc4Fr0zOCXXu2Esoi_y84DhULjO2THFiH0cgy18F7-LMBR9sCn6bgptsHhNLrzp0N38nnOyeXn-WL6W6_fV2_JpXVrO1VjyxrRUga8oM23VLKByyghvjFxYYWUrG2jappagFq4StWqMqb3yUgIImatqTu6OvrsUvyaHo97GKQ35S02zSDBWCZYpeqTyhIjJeb1LoTdpnyF9yEsf89I5L33IS--z5v7X2aA1nc_r24AnIeOcUSpk5tiRw9waPl36O8F_5j_DBnvy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095622362</pqid></control><display><type>article</type><title>Ultrafast measurement of transient electroosmotic flow in microfluidics</title><source>Springer Nature - Complete Springer Journals</source><creator>Kuang, Cuifang ; Qiao, Rui ; Wang, Guiren</creator><creatorcontrib>Kuang, Cuifang ; Qiao, Rui ; Wang, Guiren</creatorcontrib><description>We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0800-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Nanotechnology and Microengineering ; Photobleaching ; Physics ; Short Communication</subject><ispartof>Microfluidics and nanofluidics, 2011-09, Vol.11 (3), p.353-358</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</citedby><cites>FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-011-0800-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-011-0800-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24421167$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Wang, Guiren</creatorcontrib><title>Ultrafast measurement of transient electroosmotic flow in microfluidics</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Nanotechnology and Microengineering</subject><subject>Photobleaching</subject><subject>Physics</subject><subject>Short Communication</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuCeFydZNNkc5SiVSh4seeQzSaSsrupmV2k_96USvHiKZnM915mHiG3FB4ogHxEChx4CZSWUAOU-zMyo4JWJVcKzk_3ml2SK8QtAJeMwoysNt2YjDc4Fr0zOCXXu2Esoi_y84DhULjO2THFiH0cgy18F7-LMBR9sCn6bgptsHhNLrzp0N38nnOyeXn-WL6W6_fV2_JpXVrO1VjyxrRUga8oM23VLKByyghvjFxYYWUrG2jappagFq4StWqMqb3yUgIImatqTu6OvrsUvyaHo97GKQ35S02zSDBWCZYpeqTyhIjJeb1LoTdpnyF9yEsf89I5L33IS--z5v7X2aA1nc_r24AnIeOcUSpk5tiRw9waPl36O8F_5j_DBnvy</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Kuang, Cuifang</creator><creator>Qiao, Rui</creator><creator>Wang, Guiren</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20110901</creationdate><title>Ultrafast measurement of transient electroosmotic flow in microfluidics</title><author>Kuang, Cuifang ; Qiao, Rui ; Wang, Guiren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Nanotechnology and Microengineering</topic><topic>Photobleaching</topic><topic>Physics</topic><topic>Short Communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Wang, Guiren</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Cuifang</au><au>Qiao, Rui</au><au>Wang, Guiren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast measurement of transient electroosmotic flow in microfluidics</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>11</volume><issue>3</issue><spage>353</spage><epage>358</epage><pages>353-358</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0800-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2011-09, Vol.11 (3), p.353-358
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1095622362
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Applied fluid mechanics
Biomedical Engineering and Bioengineering
Engineering
Engineering Fluid Dynamics
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Nanotechnology and Microengineering
Photobleaching
Physics
Short Communication
title Ultrafast measurement of transient electroosmotic flow in microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20measurement%20of%20transient%20electroosmotic%20flow%20in%20microfluidics&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Kuang,%20Cuifang&rft.date=2011-09-01&rft.volume=11&rft.issue=3&rft.spage=353&rft.epage=358&rft.pages=353-358&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0800-y&rft_dat=%3Cproquest_cross%3E2785095051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095622362&rft_id=info:pmid/&rfr_iscdi=true