Ultrafast measurement of transient electroosmotic flow in microfluidics
We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2011-09, Vol.11 (3), p.353-358 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 3 |
container_start_page | 353 |
container_title | Microfluidics and nanofluidics |
container_volume | 11 |
creator | Kuang, Cuifang Qiao, Rui Wang, Guiren |
description | We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter. |
doi_str_mv | 10.1007/s10404-011-0800-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1095622362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785095051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCeFydZNNkc5SiVSh4seeQzSaSsrupmV2k_96USvHiKZnM915mHiG3FB4ogHxEChx4CZSWUAOU-zMyo4JWJVcKzk_3ml2SK8QtAJeMwoysNt2YjDc4Fr0zOCXXu2Esoi_y84DhULjO2THFiH0cgy18F7-LMBR9sCn6bgptsHhNLrzp0N38nnOyeXn-WL6W6_fV2_JpXVrO1VjyxrRUga8oM23VLKByyghvjFxYYWUrG2jappagFq4StWqMqb3yUgIImatqTu6OvrsUvyaHo97GKQ35S02zSDBWCZYpeqTyhIjJeb1LoTdpnyF9yEsf89I5L33IS--z5v7X2aA1nc_r24AnIeOcUSpk5tiRw9waPl36O8F_5j_DBnvy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095622362</pqid></control><display><type>article</type><title>Ultrafast measurement of transient electroosmotic flow in microfluidics</title><source>Springer Nature - Complete Springer Journals</source><creator>Kuang, Cuifang ; Qiao, Rui ; Wang, Guiren</creator><creatorcontrib>Kuang, Cuifang ; Qiao, Rui ; Wang, Guiren</creatorcontrib><description>We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0800-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Nanotechnology and Microengineering ; Photobleaching ; Physics ; Short Communication</subject><ispartof>Microfluidics and nanofluidics, 2011-09, Vol.11 (3), p.353-358</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</citedby><cites>FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-011-0800-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-011-0800-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24421167$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Wang, Guiren</creatorcontrib><title>Ultrafast measurement of transient electroosmotic flow in microfluidics</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Nanotechnology and Microengineering</subject><subject>Photobleaching</subject><subject>Physics</subject><subject>Short Communication</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuCeFydZNNkc5SiVSh4seeQzSaSsrupmV2k_96USvHiKZnM915mHiG3FB4ogHxEChx4CZSWUAOU-zMyo4JWJVcKzk_3ml2SK8QtAJeMwoysNt2YjDc4Fr0zOCXXu2Esoi_y84DhULjO2THFiH0cgy18F7-LMBR9sCn6bgptsHhNLrzp0N38nnOyeXn-WL6W6_fV2_JpXVrO1VjyxrRUga8oM23VLKByyghvjFxYYWUrG2jappagFq4StWqMqb3yUgIImatqTu6OvrsUvyaHo97GKQ35S02zSDBWCZYpeqTyhIjJeb1LoTdpnyF9yEsf89I5L33IS--z5v7X2aA1nc_r24AnIeOcUSpk5tiRw9waPl36O8F_5j_DBnvy</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Kuang, Cuifang</creator><creator>Qiao, Rui</creator><creator>Wang, Guiren</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20110901</creationdate><title>Ultrafast measurement of transient electroosmotic flow in microfluidics</title><author>Kuang, Cuifang ; Qiao, Rui ; Wang, Guiren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-4bad190f312ad3b503e9a6faa75c6c7d7b0bdb87095e3689baa8f9f7700679ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Nanotechnology and Microengineering</topic><topic>Photobleaching</topic><topic>Physics</topic><topic>Short Communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Wang, Guiren</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Cuifang</au><au>Qiao, Rui</au><au>Wang, Guiren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast measurement of transient electroosmotic flow in microfluidics</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>11</volume><issue>3</issue><spage>353</spage><epage>358</epage><pages>353-358</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>We present a non-intrusive molecular dye based method, i.e., laser-induced fluorescence photobleaching anemometer (LIFPA), to significantly increase temporal resolution (TR) for velocity measurement of fast transient electrokinetic flows. To our knowledge, the TR has been for the first time achieved to 5–10 μs, about 100 times better than that published from state-of-the-art micro particle image velocimetry (μPIV), which is currently the most widely used velocimetry in the microfluidics community. The new method provides us with new opportunities to study experimentally the fundamental phenomena of unsteady electrokinetics (EK) and to validate relevant theoretical models. One application of the new method is demonstrated by measuring the rise time of DC electroosmotic flows (EOFs) in a microcapillary of 10 μm in diameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0800-y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2011-09, Vol.11 (3), p.353-358 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1095622362 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Applied fluid mechanics Biomedical Engineering and Bioengineering Engineering Engineering Fluid Dynamics Exact sciences and technology Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Instrumentation for fluid dynamics Nanotechnology and Microengineering Photobleaching Physics Short Communication |
title | Ultrafast measurement of transient electroosmotic flow in microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20measurement%20of%20transient%20electroosmotic%20flow%20in%20microfluidics&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Kuang,%20Cuifang&rft.date=2011-09-01&rft.volume=11&rft.issue=3&rft.spage=353&rft.epage=358&rft.pages=353-358&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0800-y&rft_dat=%3Cproquest_cross%3E2785095051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095622362&rft_id=info:pmid/&rfr_iscdi=true |