Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms
This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2012-10, Vol.28 (5), p.1181-1188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1188 |
---|---|
container_issue | 5 |
container_start_page | 1181 |
container_title | IEEE transactions on robotics |
container_volume | 28 |
creator | Pasqualetti, F. Durham, J. W. Bullo, F. |
description | This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments. |
doi_str_mv | 10.1109/TRO.2012.2201293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1082004905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6213137</ieee_id><sourcerecordid>2777348441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxYMoWKt3wcuCeEzdz2TXW6mfUGiRiuAlbDaTdkuarbtpof-9G1q8zAzM7z1mXpLcEjwiBKvHxedsRDGhI9pXxc6SAVGcpJhn8jzOQtCUYSUvk6sQ1hhTrjAbJD8T57bgdWf3gOa6865pbLtEe6vRN9jlqoMKLdzOhyc0B187v9GtATRudXMINiDdVujZhs7bctez42bpvO1Wm3CdXNS6CXBz6sPk6_VlMXlPp7O3j8l4mhpOVZfWsqq5ZKICUypcYQMUBOGVzGiWk6xkFc1Lo5VUWuW5NFKUDIwgIsOCC67ZMLk_-m69-91B6Ip1vDfeFwqCJcU4fioihY-U8S4ED3Wx9Xaj_SFCRZ9gERMs-uyKU4JR8nAy1sHopvbxcxv-dVTSTLIcR-7uyFkA-F9nlDDCcvYH83Z5nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082004905</pqid></control><display><type>article</type><title>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Pasqualetti, F. ; Durham, J. W. ; Bullo, F.</creator><creatorcontrib>Pasqualetti, F. ; Durham, J. W. ; Bullo, F.</creatorcontrib><description>This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2012.2201293</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Autonomous agents ; Communication ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Distributed control ; distributed robot systems ; Exact sciences and technology ; Lead ; path planning for multiple mobile robot systems ; Performance evaluation ; Robot kinematics ; Robot sensing systems ; Robotics ; Robots ; search and rescue robots ; surveillance systems ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2012-10, Vol.28 (5), p.1181-1188</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</citedby><cites>FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6213137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6213137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28268370$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasqualetti, F.</creatorcontrib><creatorcontrib>Durham, J. W.</creatorcontrib><creatorcontrib>Bullo, F.</creatorcontrib><title>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autonomous agents</subject><subject>Communication</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Distributed control</subject><subject>distributed robot systems</subject><subject>Exact sciences and technology</subject><subject>Lead</subject><subject>path planning for multiple mobile robot systems</subject><subject>Performance evaluation</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>search and rescue robots</subject><subject>surveillance systems</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxYMoWKt3wcuCeEzdz2TXW6mfUGiRiuAlbDaTdkuarbtpof-9G1q8zAzM7z1mXpLcEjwiBKvHxedsRDGhI9pXxc6SAVGcpJhn8jzOQtCUYSUvk6sQ1hhTrjAbJD8T57bgdWf3gOa6865pbLtEe6vRN9jlqoMKLdzOhyc0B187v9GtATRudXMINiDdVujZhs7bctez42bpvO1Wm3CdXNS6CXBz6sPk6_VlMXlPp7O3j8l4mhpOVZfWsqq5ZKICUypcYQMUBOGVzGiWk6xkFc1Lo5VUWuW5NFKUDIwgIsOCC67ZMLk_-m69-91B6Ip1vDfeFwqCJcU4fioihY-U8S4ED3Wx9Xaj_SFCRZ9gERMs-uyKU4JR8nAy1sHopvbxcxv-dVTSTLIcR-7uyFkA-F9nlDDCcvYH83Z5nA</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Pasqualetti, F.</creator><creator>Durham, J. W.</creator><creator>Bullo, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121001</creationdate><title>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</title><author>Pasqualetti, F. ; Durham, J. W. ; Bullo, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autonomous agents</topic><topic>Communication</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Distributed control</topic><topic>distributed robot systems</topic><topic>Exact sciences and technology</topic><topic>Lead</topic><topic>path planning for multiple mobile robot systems</topic><topic>Performance evaluation</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>search and rescue robots</topic><topic>surveillance systems</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasqualetti, F.</creatorcontrib><creatorcontrib>Durham, J. W.</creatorcontrib><creatorcontrib>Bullo, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pasqualetti, F.</au><au>Durham, J. W.</au><au>Bullo, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>28</volume><issue>5</issue><spage>1181</spage><epage>1188</epage><pages>1181-1188</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2012.2201293</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2012-10, Vol.28 (5), p.1181-1188 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_1082004905 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Autonomous agents Communication Computer science control theory systems Control system analysis Control theory. Systems Distributed control distributed robot systems Exact sciences and technology Lead path planning for multiple mobile robot systems Performance evaluation Robot kinematics Robot sensing systems Robotics Robots search and rescue robots surveillance systems Trajectory Uncertainty |
title | Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Patrolling%20via%20Weighted%20Tours:%20Performance%20Analysis%20and%20Distributed%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Pasqualetti,%20F.&rft.date=2012-10-01&rft.volume=28&rft.issue=5&rft.spage=1181&rft.epage=1188&rft.pages=1181-1188&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2012.2201293&rft_dat=%3Cproquest_RIE%3E2777348441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082004905&rft_id=info:pmid/&rft_ieee_id=6213137&rfr_iscdi=true |