Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms

This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2012-10, Vol.28 (5), p.1181-1188
Hauptverfasser: Pasqualetti, F., Durham, J. W., Bullo, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1188
container_issue 5
container_start_page 1181
container_title IEEE transactions on robotics
container_volume 28
creator Pasqualetti, F.
Durham, J. W.
Bullo, F.
description This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.
doi_str_mv 10.1109/TRO.2012.2201293
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1082004905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6213137</ieee_id><sourcerecordid>2777348441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxYMoWKt3wcuCeEzdz2TXW6mfUGiRiuAlbDaTdkuarbtpof-9G1q8zAzM7z1mXpLcEjwiBKvHxedsRDGhI9pXxc6SAVGcpJhn8jzOQtCUYSUvk6sQ1hhTrjAbJD8T57bgdWf3gOa6865pbLtEe6vRN9jlqoMKLdzOhyc0B187v9GtATRudXMINiDdVujZhs7bctez42bpvO1Wm3CdXNS6CXBz6sPk6_VlMXlPp7O3j8l4mhpOVZfWsqq5ZKICUypcYQMUBOGVzGiWk6xkFc1Lo5VUWuW5NFKUDIwgIsOCC67ZMLk_-m69-91B6Ip1vDfeFwqCJcU4fioihY-U8S4ED3Wx9Xaj_SFCRZ9gERMs-uyKU4JR8nAy1sHopvbxcxv-dVTSTLIcR-7uyFkA-F9nlDDCcvYH83Z5nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082004905</pqid></control><display><type>article</type><title>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Pasqualetti, F. ; Durham, J. W. ; Bullo, F.</creator><creatorcontrib>Pasqualetti, F. ; Durham, J. W. ; Bullo, F.</creatorcontrib><description>This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2012.2201293</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Autonomous agents ; Communication ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Distributed control ; distributed robot systems ; Exact sciences and technology ; Lead ; path planning for multiple mobile robot systems ; Performance evaluation ; Robot kinematics ; Robot sensing systems ; Robotics ; Robots ; search and rescue robots ; surveillance systems ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2012-10, Vol.28 (5), p.1181-1188</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</citedby><cites>FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6213137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6213137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28268370$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasqualetti, F.</creatorcontrib><creatorcontrib>Durham, J. W.</creatorcontrib><creatorcontrib>Bullo, F.</creatorcontrib><title>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autonomous agents</subject><subject>Communication</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Distributed control</subject><subject>distributed robot systems</subject><subject>Exact sciences and technology</subject><subject>Lead</subject><subject>path planning for multiple mobile robot systems</subject><subject>Performance evaluation</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>search and rescue robots</subject><subject>surveillance systems</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxYMoWKt3wcuCeEzdz2TXW6mfUGiRiuAlbDaTdkuarbtpof-9G1q8zAzM7z1mXpLcEjwiBKvHxedsRDGhI9pXxc6SAVGcpJhn8jzOQtCUYSUvk6sQ1hhTrjAbJD8T57bgdWf3gOa6865pbLtEe6vRN9jlqoMKLdzOhyc0B187v9GtATRudXMINiDdVujZhs7bctez42bpvO1Wm3CdXNS6CXBz6sPk6_VlMXlPp7O3j8l4mhpOVZfWsqq5ZKICUypcYQMUBOGVzGiWk6xkFc1Lo5VUWuW5NFKUDIwgIsOCC67ZMLk_-m69-91B6Ip1vDfeFwqCJcU4fioihY-U8S4ED3Wx9Xaj_SFCRZ9gERMs-uyKU4JR8nAy1sHopvbxcxv-dVTSTLIcR-7uyFkA-F9nlDDCcvYH83Z5nA</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Pasqualetti, F.</creator><creator>Durham, J. W.</creator><creator>Bullo, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121001</creationdate><title>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</title><author>Pasqualetti, F. ; Durham, J. W. ; Bullo, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f8df4835decb90d0ce2e514d8626716b3d27bca989a9778c85b3ec515605454a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autonomous agents</topic><topic>Communication</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Distributed control</topic><topic>distributed robot systems</topic><topic>Exact sciences and technology</topic><topic>Lead</topic><topic>path planning for multiple mobile robot systems</topic><topic>Performance evaluation</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>search and rescue robots</topic><topic>surveillance systems</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasqualetti, F.</creatorcontrib><creatorcontrib>Durham, J. W.</creatorcontrib><creatorcontrib>Bullo, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pasqualetti, F.</au><au>Durham, J. W.</au><au>Bullo, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>28</volume><issue>5</issue><spage>1181</spage><epage>1188</epage><pages>1181-1188</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This paper focuses on the problem of patrolling an environment with a team of autonomous agents. Given a set of strategically important locations (viewpoints) with different priorities, our patrolling strategy consists of 1) constructing a tour through the viewpoints, and 2) driving the robots along the tour in a coordinated way. As performance criteria, we consider the weighted refresh time, i.e., the longest time interval between any two visits of a viewpoint, weighted by the viewpoint's priority. We consider the design of both optimal trajectories and distributed control laws for the robots to converge to optimal trajectories. First, we propose a patrolling strategy and we characterize its performance as a function of the environment and the viewpoints priorities. Second, we restrict our attention to the problem of patrolling a nonintersecting tour, and we describe a team trajectory with minimum weighted refresh time. Third, for the tour patrolling problem and for two distinct communication scenarios, namely the Passing and the Neighbor-Broadcast communication models, we develop distributed algorithms to steer the robots toward a minimum weighted refresh time team trajectory. Finally, we show the effectiveness and robustness of our control algorithms via simulations and experiments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2012.2201293</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2012-10, Vol.28 (5), p.1181-1188
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_1082004905
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Autonomous agents
Communication
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Distributed control
distributed robot systems
Exact sciences and technology
Lead
path planning for multiple mobile robot systems
Performance evaluation
Robot kinematics
Robot sensing systems
Robotics
Robots
search and rescue robots
surveillance systems
Trajectory
Uncertainty
title Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Patrolling%20via%20Weighted%20Tours:%20Performance%20Analysis%20and%20Distributed%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Pasqualetti,%20F.&rft.date=2012-10-01&rft.volume=28&rft.issue=5&rft.spage=1181&rft.epage=1188&rft.pages=1181-1188&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2012.2201293&rft_dat=%3Cproquest_RIE%3E2777348441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082004905&rft_id=info:pmid/&rft_ieee_id=6213137&rfr_iscdi=true