Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems
A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite numbe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2012-10, Vol.57 (10), p.2633-2639 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2639 |
---|---|
container_issue | 10 |
container_start_page | 2633 |
container_title | IEEE transactions on automatic control |
container_volume | 57 |
creator | Dehghani, A. Rotkowitz, M. C. Anderson, B. D. O. Cha, S. H. |
description | A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains. |
doi_str_mv | 10.1109/TAC.2012.2190210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1080598274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6166436</ieee_id><sourcerecordid>1365143008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWKt3wUtABC9bJ5NNujmWUqtQUNzqdUmziU3Z7tZNi_Tfm6WlB0_Dx7wZZh4htwwGjIF6mo_GAwSGA2QKkMEZ6TEhsgQF8nPSA2BZojCTl-QqhFWMMk1Zj0xyv95U3nlb0g-98SXNf_3WLH39Tafa1zQ3S1vuqi67pqWajisdAm0cnb1_0XwftnYdrsmF01WwN8faJ5_Pk_n4JZm9TV_Ho1liuEi3iRFK24WVQwTMdCmlTMEt5FAp0ExJozhfuBLRWFQlSIFaKzDCKYYuW6iM98njYe-mbX52NmyLtQ_GVpWubbMLBeNSsJQDdOj9P3TV7No6XlcwyECoDIdppOBAmbYJobWu2LR-rdt9hIrOaxG9Fp3X4ug1jjwcF-tgdOVaXRsfTnMYvXJMZeTuDpy31p7aksWnueR_5YZ9uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080598274</pqid></control><display><type>article</type><title>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</title><source>IEEE Xplore</source><creator>Dehghani, A. ; Rotkowitz, M. C. ; Anderson, B. D. O. ; Cha, S. H.</creator><creatorcontrib>Dehghani, A. ; Rotkowitz, M. C. ; Anderson, B. D. O. ; Cha, S. H.</creatorcontrib><description>A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2190210</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Asymptotic Riccati equations (ARE) ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Differential equations ; Exact sciences and technology ; Gain ; Gain scheduling ; Mathematical analysis ; Observers ; On-line systems ; Remedies ; Riccati differential equation (RDE ; Stability analysis ; State feedback ; Steady-state ; Switches ; Switching ; Transient analysis</subject><ispartof>IEEE transactions on automatic control, 2012-10, Vol.57 (10), p.2633-2639</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</citedby><cites>FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6166436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6166436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26443246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehghani, A.</creatorcontrib><creatorcontrib>Rotkowitz, M. C.</creatorcontrib><creatorcontrib>Anderson, B. D. O.</creatorcontrib><creatorcontrib>Cha, S. H.</creatorcontrib><title>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Asymptotic Riccati equations (ARE)</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Gain scheduling</subject><subject>Mathematical analysis</subject><subject>Observers</subject><subject>On-line systems</subject><subject>Remedies</subject><subject>Riccati differential equation (RDE</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>Steady-state</subject><subject>Switches</subject><subject>Switching</subject><subject>Transient analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQRoMoWKt3wUtABC9bJ5NNujmWUqtQUNzqdUmziU3Z7tZNi_Tfm6WlB0_Dx7wZZh4htwwGjIF6mo_GAwSGA2QKkMEZ6TEhsgQF8nPSA2BZojCTl-QqhFWMMk1Zj0xyv95U3nlb0g-98SXNf_3WLH39Tafa1zQ3S1vuqi67pqWajisdAm0cnb1_0XwftnYdrsmF01WwN8faJ5_Pk_n4JZm9TV_Ho1liuEi3iRFK24WVQwTMdCmlTMEt5FAp0ExJozhfuBLRWFQlSIFaKzDCKYYuW6iM98njYe-mbX52NmyLtQ_GVpWubbMLBeNSsJQDdOj9P3TV7No6XlcwyECoDIdppOBAmbYJobWu2LR-rdt9hIrOaxG9Fp3X4ug1jjwcF-tgdOVaXRsfTnMYvXJMZeTuDpy31p7aksWnueR_5YZ9uw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Dehghani, A.</creator><creator>Rotkowitz, M. C.</creator><creator>Anderson, B. D. O.</creator><creator>Cha, S. H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20121001</creationdate><title>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</title><author>Dehghani, A. ; Rotkowitz, M. C. ; Anderson, B. D. O. ; Cha, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Asymptotic Riccati equations (ARE)</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Gain scheduling</topic><topic>Mathematical analysis</topic><topic>Observers</topic><topic>On-line systems</topic><topic>Remedies</topic><topic>Riccati differential equation (RDE</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>Steady-state</topic><topic>Switches</topic><topic>Switching</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghani, A.</creatorcontrib><creatorcontrib>Rotkowitz, M. C.</creatorcontrib><creatorcontrib>Anderson, B. D. O.</creatorcontrib><creatorcontrib>Cha, S. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dehghani, A.</au><au>Rotkowitz, M. C.</au><au>Anderson, B. D. O.</au><au>Cha, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>57</volume><issue>10</issue><spage>2633</spage><epage>2639</epage><pages>2633-2639</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2190210</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2012-10, Vol.57 (10), p.2633-2639 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_1080598274 |
source | IEEE Xplore |
subjects | Applied sciences Asymptotic properties Asymptotic Riccati equations (ARE) Computer science control theory systems Control system synthesis Control theory. Systems Differential equations Exact sciences and technology Gain Gain scheduling Mathematical analysis Observers On-line systems Remedies Riccati differential equation (RDE Stability analysis State feedback Steady-state Switches Switching Transient analysis |
title | Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20Rapid%20Switching%20Gain%20Scheduling%20for%20a%20Class%20of%20LPV%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Dehghani,%20A.&rft.date=2012-10-01&rft.volume=57&rft.issue=10&rft.spage=2633&rft.epage=2639&rft.pages=2633-2639&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2190210&rft_dat=%3Cproquest_RIE%3E1365143008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080598274&rft_id=info:pmid/&rft_ieee_id=6166436&rfr_iscdi=true |