Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems

A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite numbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2012-10, Vol.57 (10), p.2633-2639
Hauptverfasser: Dehghani, A., Rotkowitz, M. C., Anderson, B. D. O., Cha, S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2639
container_issue 10
container_start_page 2633
container_title IEEE transactions on automatic control
container_volume 57
creator Dehghani, A.
Rotkowitz, M. C.
Anderson, B. D. O.
Cha, S. H.
description A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.
doi_str_mv 10.1109/TAC.2012.2190210
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1080598274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6166436</ieee_id><sourcerecordid>1365143008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWKt3wUtABC9bJ5NNujmWUqtQUNzqdUmziU3Z7tZNi_Tfm6WlB0_Dx7wZZh4htwwGjIF6mo_GAwSGA2QKkMEZ6TEhsgQF8nPSA2BZojCTl-QqhFWMMk1Zj0xyv95U3nlb0g-98SXNf_3WLH39Tafa1zQ3S1vuqi67pqWajisdAm0cnb1_0XwftnYdrsmF01WwN8faJ5_Pk_n4JZm9TV_Ho1liuEi3iRFK24WVQwTMdCmlTMEt5FAp0ExJozhfuBLRWFQlSIFaKzDCKYYuW6iM98njYe-mbX52NmyLtQ_GVpWubbMLBeNSsJQDdOj9P3TV7No6XlcwyECoDIdppOBAmbYJobWu2LR-rdt9hIrOaxG9Fp3X4ug1jjwcF-tgdOVaXRsfTnMYvXJMZeTuDpy31p7aksWnueR_5YZ9uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080598274</pqid></control><display><type>article</type><title>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</title><source>IEEE Xplore</source><creator>Dehghani, A. ; Rotkowitz, M. C. ; Anderson, B. D. O. ; Cha, S. H.</creator><creatorcontrib>Dehghani, A. ; Rotkowitz, M. C. ; Anderson, B. D. O. ; Cha, S. H.</creatorcontrib><description>A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2190210</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Asymptotic Riccati equations (ARE) ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Differential equations ; Exact sciences and technology ; Gain ; Gain scheduling ; Mathematical analysis ; Observers ; On-line systems ; Remedies ; Riccati differential equation (RDE ; Stability analysis ; State feedback ; Steady-state ; Switches ; Switching ; Transient analysis</subject><ispartof>IEEE transactions on automatic control, 2012-10, Vol.57 (10), p.2633-2639</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</citedby><cites>FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6166436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6166436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26443246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehghani, A.</creatorcontrib><creatorcontrib>Rotkowitz, M. C.</creatorcontrib><creatorcontrib>Anderson, B. D. O.</creatorcontrib><creatorcontrib>Cha, S. H.</creatorcontrib><title>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Asymptotic Riccati equations (ARE)</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Gain scheduling</subject><subject>Mathematical analysis</subject><subject>Observers</subject><subject>On-line systems</subject><subject>Remedies</subject><subject>Riccati differential equation (RDE</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>Steady-state</subject><subject>Switches</subject><subject>Switching</subject><subject>Transient analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQRoMoWKt3wUtABC9bJ5NNujmWUqtQUNzqdUmziU3Z7tZNi_Tfm6WlB0_Dx7wZZh4htwwGjIF6mo_GAwSGA2QKkMEZ6TEhsgQF8nPSA2BZojCTl-QqhFWMMk1Zj0xyv95U3nlb0g-98SXNf_3WLH39Tafa1zQ3S1vuqi67pqWajisdAm0cnb1_0XwftnYdrsmF01WwN8faJ5_Pk_n4JZm9TV_Ho1liuEi3iRFK24WVQwTMdCmlTMEt5FAp0ExJozhfuBLRWFQlSIFaKzDCKYYuW6iM98njYe-mbX52NmyLtQ_GVpWubbMLBeNSsJQDdOj9P3TV7No6XlcwyECoDIdppOBAmbYJobWu2LR-rdt9hIrOaxG9Fp3X4ug1jjwcF-tgdOVaXRsfTnMYvXJMZeTuDpy31p7aksWnueR_5YZ9uw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Dehghani, A.</creator><creator>Rotkowitz, M. C.</creator><creator>Anderson, B. D. O.</creator><creator>Cha, S. H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20121001</creationdate><title>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</title><author>Dehghani, A. ; Rotkowitz, M. C. ; Anderson, B. D. O. ; Cha, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c59aebe672028ad66640fb67990a196c933bfd22ce29d0652aa90c5f912f8b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Asymptotic Riccati equations (ARE)</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Gain scheduling</topic><topic>Mathematical analysis</topic><topic>Observers</topic><topic>On-line systems</topic><topic>Remedies</topic><topic>Riccati differential equation (RDE</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>Steady-state</topic><topic>Switches</topic><topic>Switching</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghani, A.</creatorcontrib><creatorcontrib>Rotkowitz, M. C.</creatorcontrib><creatorcontrib>Anderson, B. D. O.</creatorcontrib><creatorcontrib>Cha, S. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dehghani, A.</au><au>Rotkowitz, M. C.</au><au>Anderson, B. D. O.</au><au>Cha, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>57</volume><issue>10</issue><spage>2633</spage><epage>2639</epage><pages>2633-2639</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A limitation of the original gain-scheduling approaches is that the closed-loop stability can only be assured when the underlying parameters vary sufficiently slowly. A remedy exists but requires for its implementation the possible solution of asymptotic Riccati equations (ARE) for an infinite number of different parameter values, and the on-line solution of a Riccati differential equation (RDE) with time-varying coefficient matrices. Our method avoids solving the RDE online and instead uses an explicit transient formula that looks up the predetermined solutions of the associated AREs at a finite set of given system operating points. Furthermore, only a finite number of AREs are solved to determine a finite set of controller gains.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2190210</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2012-10, Vol.57 (10), p.2633-2639
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_1080598274
source IEEE Xplore
subjects Applied sciences
Asymptotic properties
Asymptotic Riccati equations (ARE)
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Differential equations
Exact sciences and technology
Gain
Gain scheduling
Mathematical analysis
Observers
On-line systems
Remedies
Riccati differential equation (RDE
Stability analysis
State feedback
Steady-state
Switches
Switching
Transient analysis
title Simplified Rapid Switching Gain Scheduling for a Class of LPV Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20Rapid%20Switching%20Gain%20Scheduling%20for%20a%20Class%20of%20LPV%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Dehghani,%20A.&rft.date=2012-10-01&rft.volume=57&rft.issue=10&rft.spage=2633&rft.epage=2639&rft.pages=2633-2639&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2190210&rft_dat=%3Cproquest_RIE%3E1365143008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080598274&rft_id=info:pmid/&rft_ieee_id=6166436&rfr_iscdi=true