Learning Image Similarity from Flickr Groups Using Fast Kernel Machines

Measuring image similarity is a central topic in computer vision. In this paper, we propose to measure image similarity by learning from the online Flickr image groups. We do so by: Choosing 103 Flickr groups, building a one-versus-all multiclass classifier to classify test images into a group, taki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2012-11, Vol.34 (11), p.2177-2188
Hauptverfasser: Gang Wang, Hoiem, D., Forsyth, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2188
container_issue 11
container_start_page 2177
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 34
creator Gang Wang
Hoiem, D.
Forsyth, D.
description Measuring image similarity is a central topic in computer vision. In this paper, we propose to measure image similarity by learning from the online Flickr image groups. We do so by: Choosing 103 Flickr groups, building a one-versus-all multiclass classifier to classify test images into a group, taking the set of responses of the classifiers as features, calculating the distance between feature vectors to measure image similarity. Experimental results on the Corel dataset and the PASCAL VOC 2007 dataset show that our approach performs better on image matching, retrieval, and classification than using conventional visual features. To build our similarity measure, we need one-versus-all classifiers that are accurate and can be trained quickly on very large quantities of data. We adopt an SVM classifier with a histogram intersection kernel. We describe a novel fast training algorithm for this classifier: the Stochastic Intersection Kernel MAchine (SIKMA) training algorithm. This method can produce a kernel classifier that is more accurate than a linear classifier on tens of thousands of examples in minutes.
doi_str_mv 10.1109/TPAMI.2012.29
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1069316619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6133292</ieee_id><sourcerecordid>1671357458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-aa2b202c77d41ecb5c4aa4dd623d4b17f7f9ba40998e6edb253f2b29242d60723</originalsourceid><addsrcrecordid>eNqF0c9r2zAUB3AxVpY023GnwTCUwi7OpCdZso6hNFloSgtLzkaWnzNl_pFK8aH_fe0my6CXnnTQ5z2k75eQr4xOGaP65_pxdr-cAmUwBf2BjJnmOuYJ1x_JmDIJcZpCOiKXIewoZSKh_BMZAWitGKgxWazQ-MY122hZmy1Gv13tKuPd4TkqfVtH88rZvz5a-Lbbh2gTBjk34RDdoW-wiu6N_eMaDJ_JRWmqgF9O54Rs5rfrm1_x6mGxvJmtYiuoOMTGQA4UrFKFYGjzxApjRFFI4IXImSpVqXMjqNYpSixySHjZT2gQUEiqgE_Ij-PevW-fOgyHrHbBYlWZBtsuZEwqxhMlkvR9SqUGqlLJe3r1hu7azjf9R14VZ1L2uU5IfFTWtyF4LLO9d7Xxzz3KhjKy1zKyoYwMBv_9tLXLayzO-l_6Pbg-AROsqUpvGuvCfyeVZgyG5307OoeI52vJOO-T4S9xkpgX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069316619</pqid></control><display><type>article</type><title>Learning Image Similarity from Flickr Groups Using Fast Kernel Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Gang Wang ; Hoiem, D. ; Forsyth, D.</creator><creatorcontrib>Gang Wang ; Hoiem, D. ; Forsyth, D.</creatorcontrib><description>Measuring image similarity is a central topic in computer vision. In this paper, we propose to measure image similarity by learning from the online Flickr image groups. We do so by: Choosing 103 Flickr groups, building a one-versus-all multiclass classifier to classify test images into a group, taking the set of responses of the classifiers as features, calculating the distance between feature vectors to measure image similarity. Experimental results on the Corel dataset and the PASCAL VOC 2007 dataset show that our approach performs better on image matching, retrieval, and classification than using conventional visual features. To build our similarity measure, we need one-versus-all classifiers that are accurate and can be trained quickly on very large quantities of data. We adopt an SVM classifier with a histogram intersection kernel. We describe a novel fast training algorithm for this classifier: the Stochastic Intersection Kernel MAchine (SIKMA) training algorithm. This method can produce a kernel classifier that is more accurate than a linear classifier on tens of thousands of examples in minutes.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.29</identifier><identifier>PMID: 22997127</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Classifiers ; Computer science; control theory; systems ; Euclidean distance ; Exact sciences and technology ; Feature extraction ; Histograms ; image classification ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; image organization ; Image similarity ; Intersections ; Kernel ; kernel machines ; Kernels ; Learning and adaptive systems ; Mathematical analysis ; online learning ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Reproducibility of Results ; Sensitivity and Specificity ; Similarity ; stochastic gradient descent ; Studies ; Subtraction Technique ; Support vector machines ; Training ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-11, Vol.34 (11), p.2177-2188</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-aa2b202c77d41ecb5c4aa4dd623d4b17f7f9ba40998e6edb253f2b29242d60723</citedby><cites>FETCH-LOGICAL-c404t-aa2b202c77d41ecb5c4aa4dd623d4b17f7f9ba40998e6edb253f2b29242d60723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6133292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6133292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26791123$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22997127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gang Wang</creatorcontrib><creatorcontrib>Hoiem, D.</creatorcontrib><creatorcontrib>Forsyth, D.</creatorcontrib><title>Learning Image Similarity from Flickr Groups Using Fast Kernel Machines</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Measuring image similarity is a central topic in computer vision. In this paper, we propose to measure image similarity by learning from the online Flickr image groups. We do so by: Choosing 103 Flickr groups, building a one-versus-all multiclass classifier to classify test images into a group, taking the set of responses of the classifiers as features, calculating the distance between feature vectors to measure image similarity. Experimental results on the Corel dataset and the PASCAL VOC 2007 dataset show that our approach performs better on image matching, retrieval, and classification than using conventional visual features. To build our similarity measure, we need one-versus-all classifiers that are accurate and can be trained quickly on very large quantities of data. We adopt an SVM classifier with a histogram intersection kernel. We describe a novel fast training algorithm for this classifier: the Stochastic Intersection Kernel MAchine (SIKMA) training algorithm. This method can produce a kernel classifier that is more accurate than a linear classifier on tens of thousands of examples in minutes.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classifiers</subject><subject>Computer science; control theory; systems</subject><subject>Euclidean distance</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>image classification</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>image organization</subject><subject>Image similarity</subject><subject>Intersections</subject><subject>Kernel</subject><subject>kernel machines</subject><subject>Kernels</subject><subject>Learning and adaptive systems</subject><subject>Mathematical analysis</subject><subject>online learning</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Similarity</subject><subject>stochastic gradient descent</subject><subject>Studies</subject><subject>Subtraction Technique</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9r2zAUB3AxVpY023GnwTCUwi7OpCdZso6hNFloSgtLzkaWnzNl_pFK8aH_fe0my6CXnnTQ5z2k75eQr4xOGaP65_pxdr-cAmUwBf2BjJnmOuYJ1x_JmDIJcZpCOiKXIewoZSKh_BMZAWitGKgxWazQ-MY122hZmy1Gv13tKuPd4TkqfVtH88rZvz5a-Lbbh2gTBjk34RDdoW-wiu6N_eMaDJ_JRWmqgF9O54Rs5rfrm1_x6mGxvJmtYiuoOMTGQA4UrFKFYGjzxApjRFFI4IXImSpVqXMjqNYpSixySHjZT2gQUEiqgE_Ij-PevW-fOgyHrHbBYlWZBtsuZEwqxhMlkvR9SqUGqlLJe3r1hu7azjf9R14VZ1L2uU5IfFTWtyF4LLO9d7Xxzz3KhjKy1zKyoYwMBv_9tLXLayzO-l_6Pbg-AROsqUpvGuvCfyeVZgyG5307OoeI52vJOO-T4S9xkpgX</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Gang Wang</creator><creator>Hoiem, D.</creator><creator>Forsyth, D.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Learning Image Similarity from Flickr Groups Using Fast Kernel Machines</title><author>Gang Wang ; Hoiem, D. ; Forsyth, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-aa2b202c77d41ecb5c4aa4dd623d4b17f7f9ba40998e6edb253f2b29242d60723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classifiers</topic><topic>Computer science; control theory; systems</topic><topic>Euclidean distance</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>image classification</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>image organization</topic><topic>Image similarity</topic><topic>Intersections</topic><topic>Kernel</topic><topic>kernel machines</topic><topic>Kernels</topic><topic>Learning and adaptive systems</topic><topic>Mathematical analysis</topic><topic>online learning</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Similarity</topic><topic>stochastic gradient descent</topic><topic>Studies</topic><topic>Subtraction Technique</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gang Wang</creatorcontrib><creatorcontrib>Hoiem, D.</creatorcontrib><creatorcontrib>Forsyth, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gang Wang</au><au>Hoiem, D.</au><au>Forsyth, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Image Similarity from Flickr Groups Using Fast Kernel Machines</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>34</volume><issue>11</issue><spage>2177</spage><epage>2188</epage><pages>2177-2188</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Measuring image similarity is a central topic in computer vision. In this paper, we propose to measure image similarity by learning from the online Flickr image groups. We do so by: Choosing 103 Flickr groups, building a one-versus-all multiclass classifier to classify test images into a group, taking the set of responses of the classifiers as features, calculating the distance between feature vectors to measure image similarity. Experimental results on the Corel dataset and the PASCAL VOC 2007 dataset show that our approach performs better on image matching, retrieval, and classification than using conventional visual features. To build our similarity measure, we need one-versus-all classifiers that are accurate and can be trained quickly on very large quantities of data. We adopt an SVM classifier with a histogram intersection kernel. We describe a novel fast training algorithm for this classifier: the Stochastic Intersection Kernel MAchine (SIKMA) training algorithm. This method can produce a kernel classifier that is more accurate than a linear classifier on tens of thousands of examples in minutes.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22997127</pmid><doi>10.1109/TPAMI.2012.29</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2012-11, Vol.34 (11), p.2177-2188
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_1069316619
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Classifiers
Computer science
control theory
systems
Euclidean distance
Exact sciences and technology
Feature extraction
Histograms
image classification
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
image organization
Image similarity
Intersections
Kernel
kernel machines
Kernels
Learning and adaptive systems
Mathematical analysis
online learning
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Reproducibility of Results
Sensitivity and Specificity
Similarity
stochastic gradient descent
Studies
Subtraction Technique
Support vector machines
Training
Visualization
title Learning Image Similarity from Flickr Groups Using Fast Kernel Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Image%20Similarity%20from%20Flickr%20Groups%20Using%20Fast%20Kernel%20Machines&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gang%20Wang&rft.date=2012-11-01&rft.volume=34&rft.issue=11&rft.spage=2177&rft.epage=2188&rft.pages=2177-2188&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.29&rft_dat=%3Cproquest_RIE%3E1671357458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069316619&rft_id=info:pmid/22997127&rft_ieee_id=6133292&rfr_iscdi=true