Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation
Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-09, Vol.109 (38), p.15342-15347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15347 |
---|---|
container_issue | 38 |
container_start_page | 15342 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Risser, Douglas D Wong, Francis C. Y Meeks, John C |
description | Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns. |
doi_str_mv | 10.1073/pnas.1207530109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1041212468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41706406</jstor_id><sourcerecordid>41706406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EomnhzAmwxDnt-GPt3QsSVBSQKkCinC2vd5w4Su1gO5H63-MoIYWLx9L7vTcjPUJeMbhkoMXVJtpyyTjoTgCD4QmZtZfNlRzgKZkBcD3vJZdn5LyUFQAMXQ_PyRnngxyUYDMSPwZbcKIhLjGHaqNDmjytS6SbnCqGSH_Y-o36jFjoDhdYbQ07pA7X60Jras5Qg62Nt7Viji1sie2T3EOpdAreY8a4R0KKL8gzb9cFXx7nBbm7-XR3_WV--_3z1-sPt3PXdX2d9xotukF5O8mRK9cJJwXX4-A8c2JSWox86js5jmoYmZqY70B4ob3upwlBXJD3h9jNdrzHybX92a7NJod7mx9MssH8r8SwNIu0M0J2vWCiBbw7BuT0e4ulmlXa5thONgwk44xL1Tfq6kC5nErJ6E8bGJh9P2bfj3nspzne_HvYif9bSAPoEdg7H-MGI3rDOiF5Q14fkFWpKZ8YyTQoCarpbw-6t8nYRQ7F_PrJgSkAxgctlPgD1yqstg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041212468</pqid></control><display><type>article</type><title>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Risser, Douglas D ; Wong, Francis C. Y ; Meeks, John C</creator><creatorcontrib>Risser, Douglas D ; Wong, Francis C. Y ; Meeks, John C</creatorcontrib><description>Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1207530109</identifier><identifier>PMID: 22949631</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - physiology ; biological development ; Biological Sciences ; Cell Differentiation ; Cell division ; Cell Lineage ; Cells ; Cellular differentiation ; Cyanobacteria ; Cyanobacteria - metabolism ; Daughter cells ; DNA, Complementary - metabolism ; epistasis ; Epistasis, Genetic ; Fluorescence ; Gene Deletion ; Gene expression regulation ; Gene Expression Regulation, Bacterial ; Genes ; Genetic inheritance ; Green Fluorescent Proteins - metabolism ; membrane proteins ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Microscopy, Fluorescence - methods ; Nitrogen Fixation ; Nostoc - metabolism ; Nostoc punctiforme ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Peptides ; Phenotype ; Phenotypes ; Phylogenetics ; Phylogeny ; Protein Structure, Tertiary ; Proteins ; Somatic cells ; Time Factors ; Transcription, Genetic ; translation (genetics) ; vegetative cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15342-15347</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</citedby><cites>FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41706406$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41706406$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22949631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Risser, Douglas D</creatorcontrib><creatorcontrib>Wong, Francis C. Y</creatorcontrib><creatorcontrib>Meeks, John C</creatorcontrib><title>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.</description><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - physiology</subject><subject>biological development</subject><subject>Biological Sciences</subject><subject>Cell Differentiation</subject><subject>Cell division</subject><subject>Cell Lineage</subject><subject>Cells</subject><subject>Cellular differentiation</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - metabolism</subject><subject>Daughter cells</subject><subject>DNA, Complementary - metabolism</subject><subject>epistasis</subject><subject>Epistasis, Genetic</subject><subject>Fluorescence</subject><subject>Gene Deletion</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Genetic inheritance</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>membrane proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nitrogen Fixation</subject><subject>Nostoc - metabolism</subject><subject>Nostoc punctiforme</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Open Reading Frames</subject><subject>Peptides</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Somatic cells</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>translation (genetics)</subject><subject>vegetative cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1vEzEQxS0EomnhzAmwxDnt-GPt3QsSVBSQKkCinC2vd5w4Su1gO5H63-MoIYWLx9L7vTcjPUJeMbhkoMXVJtpyyTjoTgCD4QmZtZfNlRzgKZkBcD3vJZdn5LyUFQAMXQ_PyRnngxyUYDMSPwZbcKIhLjGHaqNDmjytS6SbnCqGSH_Y-o36jFjoDhdYbQ07pA7X60Jras5Qg62Nt7Viji1sie2T3EOpdAreY8a4R0KKL8gzb9cFXx7nBbm7-XR3_WV--_3z1-sPt3PXdX2d9xotukF5O8mRK9cJJwXX4-A8c2JSWox86js5jmoYmZqY70B4ob3upwlBXJD3h9jNdrzHybX92a7NJod7mx9MssH8r8SwNIu0M0J2vWCiBbw7BuT0e4ulmlXa5thONgwk44xL1Tfq6kC5nErJ6E8bGJh9P2bfj3nspzne_HvYif9bSAPoEdg7H-MGI3rDOiF5Q14fkFWpKZ8YyTQoCarpbw-6t8nYRQ7F_PrJgSkAxgctlPgD1yqstg</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Risser, Douglas D</creator><creator>Wong, Francis C. Y</creator><creator>Meeks, John C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120918</creationdate><title>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</title><author>Risser, Douglas D ; Wong, Francis C. Y ; Meeks, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - physiology</topic><topic>biological development</topic><topic>Biological Sciences</topic><topic>Cell Differentiation</topic><topic>Cell division</topic><topic>Cell Lineage</topic><topic>Cells</topic><topic>Cellular differentiation</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - metabolism</topic><topic>Daughter cells</topic><topic>DNA, Complementary - metabolism</topic><topic>epistasis</topic><topic>Epistasis, Genetic</topic><topic>Fluorescence</topic><topic>Gene Deletion</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Genetic inheritance</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>membrane proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nitrogen Fixation</topic><topic>Nostoc - metabolism</topic><topic>Nostoc punctiforme</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Open Reading Frames</topic><topic>Peptides</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Somatic cells</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>translation (genetics)</topic><topic>vegetative cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Risser, Douglas D</creatorcontrib><creatorcontrib>Wong, Francis C. Y</creatorcontrib><creatorcontrib>Meeks, John C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Risser, Douglas D</au><au>Wong, Francis C. Y</au><au>Meeks, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>109</volume><issue>38</issue><spage>15342</spage><epage>15347</epage><pages>15342-15347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22949631</pmid><doi>10.1073/pnas.1207530109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15342-15347 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1041212468 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - physiology biological development Biological Sciences Cell Differentiation Cell division Cell Lineage Cells Cellular differentiation Cyanobacteria Cyanobacteria - metabolism Daughter cells DNA, Complementary - metabolism epistasis Epistasis, Genetic Fluorescence Gene Deletion Gene expression regulation Gene Expression Regulation, Bacterial Genes Genetic inheritance Green Fluorescent Proteins - metabolism membrane proteins Membrane Proteins - genetics Membrane Proteins - physiology Microscopy, Fluorescence - methods Nitrogen Fixation Nostoc - metabolism Nostoc punctiforme Oligonucleotide Array Sequence Analysis Open Reading Frames Peptides Phenotype Phenotypes Phylogenetics Phylogeny Protein Structure, Tertiary Proteins Somatic cells Time Factors Transcription, Genetic translation (genetics) vegetative cells |
title | Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biased%20inheritance%20of%20the%20protein%20PatN%20frees%20vegetative%20cells%20to%20initiate%20patterned%20heterocyst%20differentiation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Risser,%20Douglas%20D&rft.date=2012-09-18&rft.volume=109&rft.issue=38&rft.spage=15342&rft.epage=15347&rft.pages=15342-15347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1207530109&rft_dat=%3Cjstor_proqu%3E41706406%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041212468&rft_id=info:pmid/22949631&rft_jstor_id=41706406&rfr_iscdi=true |