Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation

Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-09, Vol.109 (38), p.15342-15347
Hauptverfasser: Risser, Douglas D, Wong, Francis C. Y, Meeks, John C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15347
container_issue 38
container_start_page 15342
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Risser, Douglas D
Wong, Francis C. Y
Meeks, John C
description Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.
doi_str_mv 10.1073/pnas.1207530109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1041212468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41706406</jstor_id><sourcerecordid>41706406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EomnhzAmwxDnt-GPt3QsSVBSQKkCinC2vd5w4Su1gO5H63-MoIYWLx9L7vTcjPUJeMbhkoMXVJtpyyTjoTgCD4QmZtZfNlRzgKZkBcD3vJZdn5LyUFQAMXQ_PyRnngxyUYDMSPwZbcKIhLjGHaqNDmjytS6SbnCqGSH_Y-o36jFjoDhdYbQ07pA7X60Jras5Qg62Nt7Viji1sie2T3EOpdAreY8a4R0KKL8gzb9cFXx7nBbm7-XR3_WV--_3z1-sPt3PXdX2d9xotukF5O8mRK9cJJwXX4-A8c2JSWox86js5jmoYmZqY70B4ob3upwlBXJD3h9jNdrzHybX92a7NJod7mx9MssH8r8SwNIu0M0J2vWCiBbw7BuT0e4ulmlXa5thONgwk44xL1Tfq6kC5nErJ6E8bGJh9P2bfj3nspzne_HvYif9bSAPoEdg7H-MGI3rDOiF5Q14fkFWpKZ8YyTQoCarpbw-6t8nYRQ7F_PrJgSkAxgctlPgD1yqstg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041212468</pqid></control><display><type>article</type><title>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Risser, Douglas D ; Wong, Francis C. Y ; Meeks, John C</creator><creatorcontrib>Risser, Douglas D ; Wong, Francis C. Y ; Meeks, John C</creatorcontrib><description>Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1207530109</identifier><identifier>PMID: 22949631</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - physiology ; biological development ; Biological Sciences ; Cell Differentiation ; Cell division ; Cell Lineage ; Cells ; Cellular differentiation ; Cyanobacteria ; Cyanobacteria - metabolism ; Daughter cells ; DNA, Complementary - metabolism ; epistasis ; Epistasis, Genetic ; Fluorescence ; Gene Deletion ; Gene expression regulation ; Gene Expression Regulation, Bacterial ; Genes ; Genetic inheritance ; Green Fluorescent Proteins - metabolism ; membrane proteins ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Microscopy, Fluorescence - methods ; Nitrogen Fixation ; Nostoc - metabolism ; Nostoc punctiforme ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Peptides ; Phenotype ; Phenotypes ; Phylogenetics ; Phylogeny ; Protein Structure, Tertiary ; Proteins ; Somatic cells ; Time Factors ; Transcription, Genetic ; translation (genetics) ; vegetative cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15342-15347</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</citedby><cites>FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41706406$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41706406$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22949631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Risser, Douglas D</creatorcontrib><creatorcontrib>Wong, Francis C. Y</creatorcontrib><creatorcontrib>Meeks, John C</creatorcontrib><title>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.</description><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - physiology</subject><subject>biological development</subject><subject>Biological Sciences</subject><subject>Cell Differentiation</subject><subject>Cell division</subject><subject>Cell Lineage</subject><subject>Cells</subject><subject>Cellular differentiation</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - metabolism</subject><subject>Daughter cells</subject><subject>DNA, Complementary - metabolism</subject><subject>epistasis</subject><subject>Epistasis, Genetic</subject><subject>Fluorescence</subject><subject>Gene Deletion</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Genetic inheritance</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>membrane proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nitrogen Fixation</subject><subject>Nostoc - metabolism</subject><subject>Nostoc punctiforme</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Open Reading Frames</subject><subject>Peptides</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Somatic cells</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>translation (genetics)</subject><subject>vegetative cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1vEzEQxS0EomnhzAmwxDnt-GPt3QsSVBSQKkCinC2vd5w4Su1gO5H63-MoIYWLx9L7vTcjPUJeMbhkoMXVJtpyyTjoTgCD4QmZtZfNlRzgKZkBcD3vJZdn5LyUFQAMXQ_PyRnngxyUYDMSPwZbcKIhLjGHaqNDmjytS6SbnCqGSH_Y-o36jFjoDhdYbQ07pA7X60Jras5Qg62Nt7Viji1sie2T3EOpdAreY8a4R0KKL8gzb9cFXx7nBbm7-XR3_WV--_3z1-sPt3PXdX2d9xotukF5O8mRK9cJJwXX4-A8c2JSWox86js5jmoYmZqY70B4ob3upwlBXJD3h9jNdrzHybX92a7NJod7mx9MssH8r8SwNIu0M0J2vWCiBbw7BuT0e4ulmlXa5thONgwk44xL1Tfq6kC5nErJ6E8bGJh9P2bfj3nspzne_HvYif9bSAPoEdg7H-MGI3rDOiF5Q14fkFWpKZ8YyTQoCarpbw-6t8nYRQ7F_PrJgSkAxgctlPgD1yqstg</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Risser, Douglas D</creator><creator>Wong, Francis C. Y</creator><creator>Meeks, John C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120918</creationdate><title>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</title><author>Risser, Douglas D ; Wong, Francis C. Y ; Meeks, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-87eaec96fad4b26c53c4327b9cf1c3d673b2d854bb69b16d1f503f37f78dde03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - physiology</topic><topic>biological development</topic><topic>Biological Sciences</topic><topic>Cell Differentiation</topic><topic>Cell division</topic><topic>Cell Lineage</topic><topic>Cells</topic><topic>Cellular differentiation</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - metabolism</topic><topic>Daughter cells</topic><topic>DNA, Complementary - metabolism</topic><topic>epistasis</topic><topic>Epistasis, Genetic</topic><topic>Fluorescence</topic><topic>Gene Deletion</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Genetic inheritance</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>membrane proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nitrogen Fixation</topic><topic>Nostoc - metabolism</topic><topic>Nostoc punctiforme</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Open Reading Frames</topic><topic>Peptides</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Somatic cells</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>translation (genetics)</topic><topic>vegetative cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Risser, Douglas D</creatorcontrib><creatorcontrib>Wong, Francis C. Y</creatorcontrib><creatorcontrib>Meeks, John C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Risser, Douglas D</au><au>Wong, Francis C. Y</au><au>Meeks, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>109</volume><issue>38</issue><spage>15342</spage><epage>15347</epage><pages>15342-15347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Heterocysts, cells specialized for nitrogen fixation in certain filamentous cyanobacteria, appear singly in a nonrandom spacing pattern along the chain of vegetative cells. A two-stage, biased initiation and competitive resolution model has been proposed to explain the establishment of this spacing pattern. There is substantial evidence that competitive resolution of a subset of cells initiating differentiation occurs by interactions between a self-enhancing activator protein, HetR, and a diffusible pentapeptide inhibitor PatS-5 (RGSGR). Results presented here show that the absence of a unique membrane protein, PatN, in Nostoc punctiforme strain ATCC 29133 leads to a threefold increase in heterocyst frequency and a fourfold decrease in the vegetative cell interval between heterocysts. A PatN-GFP translational fusion shows a pattern of biased inheritance in daughter vegetative cells of ammonium-grown cultures. Inactivation of another heterocyst patterning gene, patA , is epistatic to inactivation of patN , and transcription of patA increases in a patN -deletion strain, implying that patN may function by modulating levels of patA . The presence of PatN is hypothesized to decrease the competency of a vegetative cell to initiate heterocyst differentiation, and the cellular concentration of PatN is dependent on cell division that results in cells transiently depleted of PatN. We suggest that biased inheritance of cell-fate determinants is a phylogenetic domain-spanning paradigm in the development of biological patterns.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22949631</pmid><doi>10.1073/pnas.1207530109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15342-15347
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1041212468
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - physiology
biological development
Biological Sciences
Cell Differentiation
Cell division
Cell Lineage
Cells
Cellular differentiation
Cyanobacteria
Cyanobacteria - metabolism
Daughter cells
DNA, Complementary - metabolism
epistasis
Epistasis, Genetic
Fluorescence
Gene Deletion
Gene expression regulation
Gene Expression Regulation, Bacterial
Genes
Genetic inheritance
Green Fluorescent Proteins - metabolism
membrane proteins
Membrane Proteins - genetics
Membrane Proteins - physiology
Microscopy, Fluorescence - methods
Nitrogen Fixation
Nostoc - metabolism
Nostoc punctiforme
Oligonucleotide Array Sequence Analysis
Open Reading Frames
Peptides
Phenotype
Phenotypes
Phylogenetics
Phylogeny
Protein Structure, Tertiary
Proteins
Somatic cells
Time Factors
Transcription, Genetic
translation (genetics)
vegetative cells
title Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biased%20inheritance%20of%20the%20protein%20PatN%20frees%20vegetative%20cells%20to%20initiate%20patterned%20heterocyst%20differentiation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Risser,%20Douglas%20D&rft.date=2012-09-18&rft.volume=109&rft.issue=38&rft.spage=15342&rft.epage=15347&rft.pages=15342-15347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1207530109&rft_dat=%3Cjstor_proqu%3E41706406%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041212468&rft_id=info:pmid/22949631&rft_jstor_id=41706406&rfr_iscdi=true