Coherence brightened laser source for atmospheric remote sensing

We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-09, Vol.109 (38), p.15185-15190
Hauptverfasser: Traverso, Andrew J, Sanchez-Gonzalez, Rodrigo, Yuan, Luqi, Wang, Kai, Voronine, Dmitri V, Zheltikov, Aleksei M, Rostovtsev, Yuri, Sautenkov, Vladimir A, Sokolov, Alexei V, North, Simon W, Scully, Marlan O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15190
container_issue 38
container_start_page 15185
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Traverso, Andrew J
Sanchez-Gonzalez, Rodrigo
Yuan, Luqi
Wang, Kai
Voronine, Dmitri V
Zheltikov, Aleksei M
Rostovtsev, Yuri
Sautenkov, Vladimir A
Sokolov, Alexei V
North, Simon W
Scully, Marlan O
description We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.
doi_str_mv 10.1073/pnas.1211481109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1041212439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41706379</jstor_id><sourcerecordid>41706379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</originalsourceid><addsrcrecordid>eNpVkE1vEzEQhi0EoqHlzImyEudtZ_y19qUCRXxJlTjQni3v7jjZKFmn9gaJf4-jhKRcbMnzzDvjh7F3CDcIjbjdjj7fIEeUBhHsCzYrJ9ZaWnjJZgC8qY3k8oK9yXkFAFYZeM0uOLfSatPM2Kd5XFKisaOqTcNiOdFIfbX2mVKV4y6V9xBT5adNzNtCDl2VaBMnqjKNeRgXV-xV8OtMb4_3JXv8-uVh_r2-__ntx_zzfd0pZaY6YN-YTigE70Urew_osQ9IIgTVAQ-m9doKUtC3Uillte57LQxK22mgRlyyu0PudtduqO9onJJfu20aNj79cdEP7v_KOCzdIv52QiojUJeAj8eAFJ92lCe3Kv8by84OQRaHXApbqNsD1aWYc6JwmoDg9srdXrk7Ky8d188XO_H_HBegOgL7znOcdcI4VGhUQd4fkFWeYjoxEhvQotnP-HCoBx-dX6Qhu8dfHFADILfaWvEX6yubLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041212439</pqid></control><display><type>article</type><title>Coherence brightened laser source for atmospheric remote sensing</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Traverso, Andrew J ; Sanchez-Gonzalez, Rodrigo ; Yuan, Luqi ; Wang, Kai ; Voronine, Dmitri V ; Zheltikov, Aleksei M ; Rostovtsev, Yuri ; Sautenkov, Vladimir A ; Sokolov, Alexei V ; North, Simon W ; Scully, Marlan O</creator><creatorcontrib>Traverso, Andrew J ; Sanchez-Gonzalez, Rodrigo ; Yuan, Luqi ; Wang, Kai ; Voronine, Dmitri V ; Zheltikov, Aleksei M ; Rostovtsev, Yuri ; Sautenkov, Vladimir A ; Sokolov, Alexei V ; North, Simon W ; Scully, Marlan O</creatorcontrib><description>We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211481109</identifier><identifier>PMID: 22949687</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Air ; Atmosphere ; Atmospherics ; Atoms ; Atoms &amp; subatomic particles ; Computer Simulation ; Electric fields ; Environmental Monitoring ; Laser beams ; Lasers ; Lasing ; Models, Statistical ; Optics ; Oxygen ; Oxygen - chemistry ; photolysis ; Photons ; Physical Sciences ; Physics ; Pumps ; Remote sensing ; Remote Sensing Technology ; Spectrophotometry - methods ; spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15185-15190</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</citedby><cites>FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41706379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41706379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22949687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Traverso, Andrew J</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Rodrigo</creatorcontrib><creatorcontrib>Yuan, Luqi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Voronine, Dmitri V</creatorcontrib><creatorcontrib>Zheltikov, Aleksei M</creatorcontrib><creatorcontrib>Rostovtsev, Yuri</creatorcontrib><creatorcontrib>Sautenkov, Vladimir A</creatorcontrib><creatorcontrib>Sokolov, Alexei V</creatorcontrib><creatorcontrib>North, Simon W</creatorcontrib><creatorcontrib>Scully, Marlan O</creatorcontrib><title>Coherence brightened laser source for atmospheric remote sensing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.</description><subject>Air</subject><subject>Atmosphere</subject><subject>Atmospherics</subject><subject>Atoms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Computer Simulation</subject><subject>Electric fields</subject><subject>Environmental Monitoring</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Models, Statistical</subject><subject>Optics</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>photolysis</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Pumps</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology</subject><subject>Spectrophotometry - methods</subject><subject>spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1vEzEQhi0EoqHlzImyEudtZ_y19qUCRXxJlTjQni3v7jjZKFmn9gaJf4-jhKRcbMnzzDvjh7F3CDcIjbjdjj7fIEeUBhHsCzYrJ9ZaWnjJZgC8qY3k8oK9yXkFAFYZeM0uOLfSatPM2Kd5XFKisaOqTcNiOdFIfbX2mVKV4y6V9xBT5adNzNtCDl2VaBMnqjKNeRgXV-xV8OtMb4_3JXv8-uVh_r2-__ntx_zzfd0pZaY6YN-YTigE70Urew_osQ9IIgTVAQ-m9doKUtC3Uillte57LQxK22mgRlyyu0PudtduqO9onJJfu20aNj79cdEP7v_KOCzdIv52QiojUJeAj8eAFJ92lCe3Kv8by84OQRaHXApbqNsD1aWYc6JwmoDg9srdXrk7Ky8d188XO_H_HBegOgL7znOcdcI4VGhUQd4fkFWeYjoxEhvQotnP-HCoBx-dX6Qhu8dfHFADILfaWvEX6yubLg</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Traverso, Andrew J</creator><creator>Sanchez-Gonzalez, Rodrigo</creator><creator>Yuan, Luqi</creator><creator>Wang, Kai</creator><creator>Voronine, Dmitri V</creator><creator>Zheltikov, Aleksei M</creator><creator>Rostovtsev, Yuri</creator><creator>Sautenkov, Vladimir A</creator><creator>Sokolov, Alexei V</creator><creator>North, Simon W</creator><creator>Scully, Marlan O</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120918</creationdate><title>Coherence brightened laser source for atmospheric remote sensing</title><author>Traverso, Andrew J ; Sanchez-Gonzalez, Rodrigo ; Yuan, Luqi ; Wang, Kai ; Voronine, Dmitri V ; Zheltikov, Aleksei M ; Rostovtsev, Yuri ; Sautenkov, Vladimir A ; Sokolov, Alexei V ; North, Simon W ; Scully, Marlan O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air</topic><topic>Atmosphere</topic><topic>Atmospherics</topic><topic>Atoms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Computer Simulation</topic><topic>Electric fields</topic><topic>Environmental Monitoring</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Models, Statistical</topic><topic>Optics</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>photolysis</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Pumps</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology</topic><topic>Spectrophotometry - methods</topic><topic>spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traverso, Andrew J</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Rodrigo</creatorcontrib><creatorcontrib>Yuan, Luqi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Voronine, Dmitri V</creatorcontrib><creatorcontrib>Zheltikov, Aleksei M</creatorcontrib><creatorcontrib>Rostovtsev, Yuri</creatorcontrib><creatorcontrib>Sautenkov, Vladimir A</creatorcontrib><creatorcontrib>Sokolov, Alexei V</creatorcontrib><creatorcontrib>North, Simon W</creatorcontrib><creatorcontrib>Scully, Marlan O</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traverso, Andrew J</au><au>Sanchez-Gonzalez, Rodrigo</au><au>Yuan, Luqi</au><au>Wang, Kai</au><au>Voronine, Dmitri V</au><au>Zheltikov, Aleksei M</au><au>Rostovtsev, Yuri</au><au>Sautenkov, Vladimir A</au><au>Sokolov, Alexei V</au><au>North, Simon W</au><au>Scully, Marlan O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherence brightened laser source for atmospheric remote sensing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>109</volume><issue>38</issue><spage>15185</spage><epage>15190</epage><pages>15185-15190</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22949687</pmid><doi>10.1073/pnas.1211481109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15185-15190
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1041212439
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air
Atmosphere
Atmospherics
Atoms
Atoms & subatomic particles
Computer Simulation
Electric fields
Environmental Monitoring
Laser beams
Lasers
Lasing
Models, Statistical
Optics
Oxygen
Oxygen - chemistry
photolysis
Photons
Physical Sciences
Physics
Pumps
Remote sensing
Remote Sensing Technology
Spectrophotometry - methods
spectroscopy
Spectrum analysis
Spectrum Analysis, Raman
Time Factors
title Coherence brightened laser source for atmospheric remote sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherence%20brightened%20laser%20source%20for%20atmospheric%20remote%20sensing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Traverso,%20Andrew%20J&rft.date=2012-09-18&rft.volume=109&rft.issue=38&rft.spage=15185&rft.epage=15190&rft.pages=15185-15190&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211481109&rft_dat=%3Cjstor_proqu%3E41706379%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041212439&rft_id=info:pmid/22949687&rft_jstor_id=41706379&rfr_iscdi=true