Coherence brightened laser source for atmospheric remote sensing
We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-09, Vol.109 (38), p.15185-15190 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15190 |
---|---|
container_issue | 38 |
container_start_page | 15185 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Traverso, Andrew J Sanchez-Gonzalez, Rodrigo Yuan, Luqi Wang, Kai Voronine, Dmitri V Zheltikov, Aleksei M Rostovtsev, Yuri Sautenkov, Vladimir A Sokolov, Alexei V North, Simon W Scully, Marlan O |
description | We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy. |
doi_str_mv | 10.1073/pnas.1211481109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1041212439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41706379</jstor_id><sourcerecordid>41706379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</originalsourceid><addsrcrecordid>eNpVkE1vEzEQhi0EoqHlzImyEudtZ_y19qUCRXxJlTjQni3v7jjZKFmn9gaJf4-jhKRcbMnzzDvjh7F3CDcIjbjdjj7fIEeUBhHsCzYrJ9ZaWnjJZgC8qY3k8oK9yXkFAFYZeM0uOLfSatPM2Kd5XFKisaOqTcNiOdFIfbX2mVKV4y6V9xBT5adNzNtCDl2VaBMnqjKNeRgXV-xV8OtMb4_3JXv8-uVh_r2-__ntx_zzfd0pZaY6YN-YTigE70Urew_osQ9IIgTVAQ-m9doKUtC3Uillte57LQxK22mgRlyyu0PudtduqO9onJJfu20aNj79cdEP7v_KOCzdIv52QiojUJeAj8eAFJ92lCe3Kv8by84OQRaHXApbqNsD1aWYc6JwmoDg9srdXrk7Ky8d188XO_H_HBegOgL7znOcdcI4VGhUQd4fkFWeYjoxEhvQotnP-HCoBx-dX6Qhu8dfHFADILfaWvEX6yubLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041212439</pqid></control><display><type>article</type><title>Coherence brightened laser source for atmospheric remote sensing</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Traverso, Andrew J ; Sanchez-Gonzalez, Rodrigo ; Yuan, Luqi ; Wang, Kai ; Voronine, Dmitri V ; Zheltikov, Aleksei M ; Rostovtsev, Yuri ; Sautenkov, Vladimir A ; Sokolov, Alexei V ; North, Simon W ; Scully, Marlan O</creator><creatorcontrib>Traverso, Andrew J ; Sanchez-Gonzalez, Rodrigo ; Yuan, Luqi ; Wang, Kai ; Voronine, Dmitri V ; Zheltikov, Aleksei M ; Rostovtsev, Yuri ; Sautenkov, Vladimir A ; Sokolov, Alexei V ; North, Simon W ; Scully, Marlan O</creatorcontrib><description>We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211481109</identifier><identifier>PMID: 22949687</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Air ; Atmosphere ; Atmospherics ; Atoms ; Atoms & subatomic particles ; Computer Simulation ; Electric fields ; Environmental Monitoring ; Laser beams ; Lasers ; Lasing ; Models, Statistical ; Optics ; Oxygen ; Oxygen - chemistry ; photolysis ; Photons ; Physical Sciences ; Physics ; Pumps ; Remote sensing ; Remote Sensing Technology ; Spectrophotometry - methods ; spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15185-15190</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</citedby><cites>FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41706379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41706379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22949687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Traverso, Andrew J</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Rodrigo</creatorcontrib><creatorcontrib>Yuan, Luqi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Voronine, Dmitri V</creatorcontrib><creatorcontrib>Zheltikov, Aleksei M</creatorcontrib><creatorcontrib>Rostovtsev, Yuri</creatorcontrib><creatorcontrib>Sautenkov, Vladimir A</creatorcontrib><creatorcontrib>Sokolov, Alexei V</creatorcontrib><creatorcontrib>North, Simon W</creatorcontrib><creatorcontrib>Scully, Marlan O</creatorcontrib><title>Coherence brightened laser source for atmospheric remote sensing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.</description><subject>Air</subject><subject>Atmosphere</subject><subject>Atmospherics</subject><subject>Atoms</subject><subject>Atoms & subatomic particles</subject><subject>Computer Simulation</subject><subject>Electric fields</subject><subject>Environmental Monitoring</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Models, Statistical</subject><subject>Optics</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>photolysis</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Pumps</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology</subject><subject>Spectrophotometry - methods</subject><subject>spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1vEzEQhi0EoqHlzImyEudtZ_y19qUCRXxJlTjQni3v7jjZKFmn9gaJf4-jhKRcbMnzzDvjh7F3CDcIjbjdjj7fIEeUBhHsCzYrJ9ZaWnjJZgC8qY3k8oK9yXkFAFYZeM0uOLfSatPM2Kd5XFKisaOqTcNiOdFIfbX2mVKV4y6V9xBT5adNzNtCDl2VaBMnqjKNeRgXV-xV8OtMb4_3JXv8-uVh_r2-__ntx_zzfd0pZaY6YN-YTigE70Urew_osQ9IIgTVAQ-m9doKUtC3Uillte57LQxK22mgRlyyu0PudtduqO9onJJfu20aNj79cdEP7v_KOCzdIv52QiojUJeAj8eAFJ92lCe3Kv8by84OQRaHXApbqNsD1aWYc6JwmoDg9srdXrk7Ky8d188XO_H_HBegOgL7znOcdcI4VGhUQd4fkFWeYjoxEhvQotnP-HCoBx-dX6Qhu8dfHFADILfaWvEX6yubLg</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Traverso, Andrew J</creator><creator>Sanchez-Gonzalez, Rodrigo</creator><creator>Yuan, Luqi</creator><creator>Wang, Kai</creator><creator>Voronine, Dmitri V</creator><creator>Zheltikov, Aleksei M</creator><creator>Rostovtsev, Yuri</creator><creator>Sautenkov, Vladimir A</creator><creator>Sokolov, Alexei V</creator><creator>North, Simon W</creator><creator>Scully, Marlan O</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120918</creationdate><title>Coherence brightened laser source for atmospheric remote sensing</title><author>Traverso, Andrew J ; Sanchez-Gonzalez, Rodrigo ; Yuan, Luqi ; Wang, Kai ; Voronine, Dmitri V ; Zheltikov, Aleksei M ; Rostovtsev, Yuri ; Sautenkov, Vladimir A ; Sokolov, Alexei V ; North, Simon W ; Scully, Marlan O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-f1d78c3510aa3b4da01a1df1e3ff5c02f8ba693e50db4555966dd638149c60e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air</topic><topic>Atmosphere</topic><topic>Atmospherics</topic><topic>Atoms</topic><topic>Atoms & subatomic particles</topic><topic>Computer Simulation</topic><topic>Electric fields</topic><topic>Environmental Monitoring</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Models, Statistical</topic><topic>Optics</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>photolysis</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Pumps</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology</topic><topic>Spectrophotometry - methods</topic><topic>spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traverso, Andrew J</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Rodrigo</creatorcontrib><creatorcontrib>Yuan, Luqi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Voronine, Dmitri V</creatorcontrib><creatorcontrib>Zheltikov, Aleksei M</creatorcontrib><creatorcontrib>Rostovtsev, Yuri</creatorcontrib><creatorcontrib>Sautenkov, Vladimir A</creatorcontrib><creatorcontrib>Sokolov, Alexei V</creatorcontrib><creatorcontrib>North, Simon W</creatorcontrib><creatorcontrib>Scully, Marlan O</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traverso, Andrew J</au><au>Sanchez-Gonzalez, Rodrigo</au><au>Yuan, Luqi</au><au>Wang, Kai</au><au>Voronine, Dmitri V</au><au>Zheltikov, Aleksei M</au><au>Rostovtsev, Yuri</au><au>Sautenkov, Vladimir A</au><au>Sokolov, Alexei V</au><au>North, Simon W</au><au>Scully, Marlan O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherence brightened laser source for atmospheric remote sensing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>109</volume><issue>38</issue><spage>15185</spage><epage>15190</epage><pages>15185-15190</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O ₂, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22949687</pmid><doi>10.1073/pnas.1211481109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.15185-15190 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1041212439 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Air Atmosphere Atmospherics Atoms Atoms & subatomic particles Computer Simulation Electric fields Environmental Monitoring Laser beams Lasers Lasing Models, Statistical Optics Oxygen Oxygen - chemistry photolysis Photons Physical Sciences Physics Pumps Remote sensing Remote Sensing Technology Spectrophotometry - methods spectroscopy Spectrum analysis Spectrum Analysis, Raman Time Factors |
title | Coherence brightened laser source for atmospheric remote sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherence%20brightened%20laser%20source%20for%20atmospheric%20remote%20sensing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Traverso,%20Andrew%20J&rft.date=2012-09-18&rft.volume=109&rft.issue=38&rft.spage=15185&rft.epage=15190&rft.pages=15185-15190&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211481109&rft_dat=%3Cjstor_proqu%3E41706379%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041212439&rft_id=info:pmid/22949687&rft_jstor_id=41706379&rfr_iscdi=true |