Diffuse Interface Models on Graphs for Classification of High Dimensional Data

There are currently several communities working on algorithms for classification of high dimensional data. This work develops a class of variational algorithms that combine recent ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally used in the PDE-based i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2012-01, Vol.10 (3), p.1090-1118
Hauptverfasser: Bertozzi, Andrea L., Flenner, Arjuna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue 3
container_start_page 1090
container_title Multiscale modeling & simulation
container_volume 10
creator Bertozzi, Andrea L.
Flenner, Arjuna
description There are currently several communities working on algorithms for classification of high dimensional data. This work develops a class of variational algorithms that combine recent ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally used in the PDE-based imaging community. The algorithms are based on the Ginzburg--Landau functional which has classical PDE connections to total variation minimization. Convex-splitting algorithms allow us to quickly find minimizers of the proposed model and take advantage of fast spectral solvers of linear graph-theoretic problems. We present diverse computational examples involving both basic clustering and semisupervised learning for different applications. Case studies include feature identification in images, segmentation in social networks, and segmentation of shapes in high dimensional datasets. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/11083109X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1041212123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766163351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-731506893be1f6dd4418a275ee6f250f01001d02ac05600dcfc56cad2547b9d33</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw4A0sceIQ2LVjJzmiFNpKBS4gcYtc_1BXaRzs9MDbk6qomsOOZj-tVkPILcIDIi8eEaHkCNXXGZmgyCHjuSzOT15Ul-QqpS0AA8lgQt5m3rl9snTZDTY6pS19Dca2iYaOzqPqN4m6EGndqpS881oNftwERxf-e0Nnfme7NCaqpTM1qGty4VSb7M3_nJLPl-ePepGt3ufL-mmVaV6VQ1ZwFCDLiq8tOmlMnmOpWCGslY4JcIAAaIApDUICGO20kFoZJvJiXRnOp-TueLeP4Wdv09Bswz6OX6QGIUd20IG6P1I6hpSidU0f_U7F3xFqDnU1p7r4HxybWpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041212123</pqid></control><display><type>article</type><title>Diffuse Interface Models on Graphs for Classification of High Dimensional Data</title><source>SIAM Journals Online</source><creator>Bertozzi, Andrea L. ; Flenner, Arjuna</creator><creatorcontrib>Bertozzi, Andrea L. ; Flenner, Arjuna</creatorcontrib><description>There are currently several communities working on algorithms for classification of high dimensional data. This work develops a class of variational algorithms that combine recent ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally used in the PDE-based imaging community. The algorithms are based on the Ginzburg--Landau functional which has classical PDE connections to total variation minimization. Convex-splitting algorithms allow us to quickly find minimizers of the proposed model and take advantage of fast spectral solvers of linear graph-theoretic problems. We present diverse computational examples involving both basic clustering and semisupervised learning for different applications. Case studies include feature identification in images, segmentation in social networks, and segmentation of shapes in high dimensional datasets. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1540-3459</identifier><identifier>EISSN: 1540-3467</identifier><identifier>DOI: 10.1137/11083109X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Euclidean space ; Graphs ; Interfaces ; Linear algebra ; Machine learning ; Methods</subject><ispartof>Multiscale modeling &amp; simulation, 2012-01, Vol.10 (3), p.1090-1118</ispartof><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-731506893be1f6dd4418a275ee6f250f01001d02ac05600dcfc56cad2547b9d33</citedby><cites>FETCH-LOGICAL-c398t-731506893be1f6dd4418a275ee6f250f01001d02ac05600dcfc56cad2547b9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Bertozzi, Andrea L.</creatorcontrib><creatorcontrib>Flenner, Arjuna</creatorcontrib><title>Diffuse Interface Models on Graphs for Classification of High Dimensional Data</title><title>Multiscale modeling &amp; simulation</title><description>There are currently several communities working on algorithms for classification of high dimensional data. This work develops a class of variational algorithms that combine recent ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally used in the PDE-based imaging community. The algorithms are based on the Ginzburg--Landau functional which has classical PDE connections to total variation minimization. Convex-splitting algorithms allow us to quickly find minimizers of the proposed model and take advantage of fast spectral solvers of linear graph-theoretic problems. We present diverse computational examples involving both basic clustering and semisupervised learning for different applications. Case studies include feature identification in images, segmentation in social networks, and segmentation of shapes in high dimensional datasets. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Euclidean space</subject><subject>Graphs</subject><subject>Interfaces</subject><subject>Linear algebra</subject><subject>Machine learning</subject><subject>Methods</subject><issn>1540-3459</issn><issn>1540-3467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM1OwzAQhC0EEqVw4A0sceIQ2LVjJzmiFNpKBS4gcYtc_1BXaRzs9MDbk6qomsOOZj-tVkPILcIDIi8eEaHkCNXXGZmgyCHjuSzOT15Ul-QqpS0AA8lgQt5m3rl9snTZDTY6pS19Dca2iYaOzqPqN4m6EGndqpS881oNftwERxf-e0Nnfme7NCaqpTM1qGty4VSb7M3_nJLPl-ePepGt3ufL-mmVaV6VQ1ZwFCDLiq8tOmlMnmOpWCGslY4JcIAAaIApDUICGO20kFoZJvJiXRnOp-TueLeP4Wdv09Bswz6OX6QGIUd20IG6P1I6hpSidU0f_U7F3xFqDnU1p7r4HxybWpI</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Bertozzi, Andrea L.</creator><creator>Flenner, Arjuna</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20120101</creationdate><title>Diffuse Interface Models on Graphs for Classification of High Dimensional Data</title><author>Bertozzi, Andrea L. ; Flenner, Arjuna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-731506893be1f6dd4418a275ee6f250f01001d02ac05600dcfc56cad2547b9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Euclidean space</topic><topic>Graphs</topic><topic>Interfaces</topic><topic>Linear algebra</topic><topic>Machine learning</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertozzi, Andrea L.</creatorcontrib><creatorcontrib>Flenner, Arjuna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Multiscale modeling &amp; simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertozzi, Andrea L.</au><au>Flenner, Arjuna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffuse Interface Models on Graphs for Classification of High Dimensional Data</atitle><jtitle>Multiscale modeling &amp; simulation</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>10</volume><issue>3</issue><spage>1090</spage><epage>1118</epage><pages>1090-1118</pages><issn>1540-3459</issn><eissn>1540-3467</eissn><abstract>There are currently several communities working on algorithms for classification of high dimensional data. This work develops a class of variational algorithms that combine recent ideas from spectral methods on graphs with nonlinear edge/region detection methods traditionally used in the PDE-based imaging community. The algorithms are based on the Ginzburg--Landau functional which has classical PDE connections to total variation minimization. Convex-splitting algorithms allow us to quickly find minimizers of the proposed model and take advantage of fast spectral solvers of linear graph-theoretic problems. We present diverse computational examples involving both basic clustering and semisupervised learning for different applications. Case studies include feature identification in images, segmentation in social networks, and segmentation of shapes in high dimensional datasets. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/11083109X</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-3459
ispartof Multiscale modeling & simulation, 2012-01, Vol.10 (3), p.1090-1118
issn 1540-3459
1540-3467
language eng
recordid cdi_proquest_journals_1041212123
source SIAM Journals Online
subjects Algorithms
Euclidean space
Graphs
Interfaces
Linear algebra
Machine learning
Methods
title Diffuse Interface Models on Graphs for Classification of High Dimensional Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffuse%20Interface%20Models%20on%20Graphs%20for%20Classification%20of%20High%20Dimensional%20Data&rft.jtitle=Multiscale%20modeling%20&%20simulation&rft.au=Bertozzi,%20Andrea%20L.&rft.date=2012-01-01&rft.volume=10&rft.issue=3&rft.spage=1090&rft.epage=1118&rft.pages=1090-1118&rft.issn=1540-3459&rft.eissn=1540-3467&rft_id=info:doi/10.1137/11083109X&rft_dat=%3Cproquest_cross%3E2766163351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041212123&rft_id=info:pmid/&rfr_iscdi=true